SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1741 2560 OR L773:1741 2552 srt2:(2020-2024)"

Sökning: L773:1741 2560 OR L773:1741 2552 > (2020-2024)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Malesevic, Nebojsa, et al. (författare)
  • Exploration of sensations evoked during electrical stimulation of the median nerve at the wrist level
  • 2023
  • Ingår i: Journal of Neural Engineering. - 1741-2560 .- 1741-2552. ; 20:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. Nerve rehabilitation following nerve injury or surgery at the wrist level is a lengthy process during which not only peripheral nerves regrow towards receptors and muscles, but also the brain undergoes plastic changes. As a result, at the time when nerves reach their targets, the brain might have already allocated some of the areas within the somatosensory cortex that originally processed hand signals to some other regions of the body. The aim of this study is to show that it is possible to evoke a variety of somatotopic sensations related to the hand while stimulating proximally to the injury, therefore, providing the brain with the relevant inputs from the hand regions affected by the nerve damage. Approach. This study included electrical stimulation of 28 able-bodied participants where an electrode that acted as a cathode was placed above the Median nerve at the wrist level. The parameters of electrical stimulation, amplitude, frequency, and pulse shape, were modulated within predefined ranges to evaluate their influence on the evoked sensations. Main results. Using this methodology, the participants reported a wide variety of somatotopic sensations from the hand regions distal to the stimulation electrode. Significance. Furthermore, to propose an accelerated stimulation tuning procedure that could be implemented in a clinical protocol and/or standalone device for providing meaningful sensations to the somatosensory cortex during nerve regeneration, we trained machine-learning techniques using the gathered data to predict the location/area, naturalness, and sensation type of the evoked sensations following different stimulation patterns.
  •  
2.
  • Rohlén, Robin, et al. (författare)
  • A fast blind source separation algorithm for decomposing ultrafast ultrasound images into spatiotemporal muscle unit kinematics
  • 2023
  • Ingår i: Journal of Neural Engineering. - 1741-2560 .- 1741-2552.
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Ultrasound can detect individual motor unit (MU) activity during voluntary isometric contractions based on their subtle axial displacements. The detection pipeline, currently performed offline, is based on displacement velocity images and identifying the subtle axial displacements. This identification can preferably be made through a blind source separation (BSS) algorithm with the feasibility of translating the pipeline from offline to online. However, the question remains how to reduce the computational time for the BSS algorithm, which includes demixing tissue velocities from many different sources, e.g., the active MU displacements, arterial pulsations, bones, connective tissue, and noise.Approach: This study proposes a fast velocity-based BSS (velBSS) algorithm suitable for online purposes that decomposes velocity images from low-force voluntary isometric contractions into spatiotemporal components associated with single MU activities. The proposed algorithm will be compared against spatiotemporal independent component analysis (stICA), i.e., the method used in previous papers, for various subjects, ultrasound- and EMG systems, where the latter acts as MU reference recordings.Main results: We found that the computational time for velBSS was at least 20 times less than for stICA, while the twitch responses and spatial maps extracted from stICA and velBSS for the same MU reference were highly correlated (0.96 ± 0.05 and 0.81 ± 0.13).Significance: The present algorithm (velBSS) is computationally much faster than the currently available method (stICA) while maintaining the same performance. It provides a promising translation towards an online pipeline and will be important in the continued development of this research field of functional neuromuscular imaging.
  •  
3.
  • Rohlén, Robin, et al. (författare)
  • Spatially repeatable components from ultrafast ultrasound are associated with motor unit activity in human isometric contractions
  • 2023
  • Ingår i: Journal of Neural Engineering. - : Institute of Physics (IOP). - 1741-2560 .- 1741-2552. ; 20:4, s. 046016-
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Ultrafast ultrasound (UUS) imaging has been used to detect intramuscular mechanical dynamics associated with single motor units (MUs). Detecting MUs from ultrasound sequences requires decomposing a velocity field into components, each consisting of an image and a signal. These components can be associated with putative MU activity or spurious movements (noise). The differentiation between putative MUs and noise has been accomplished by comparing the signals with MU firings obtained from needle electromyography (EMG). Here, we examined whether the repeatability of the images over brief time intervals can serve as a criterion for distinguishing putative MUs from noise in low-force isometric contractions.Approach: UUS images and high-density surface EMG (HDsEMG) were recorded simultaneously from 99 MUs in the biceps brachii of five healthy subjects. The MUs identified through HDsEMG decomposition were used as a reference to assess the outcomes of the ultrasound-based components. For each contraction, velocity sequences from the same eight-second ultrasound recording were separated into consecutive two-second epochs and decomposed. To evaluate the repeatability of components' images across epochs, we calculated the Jaccard Similarity Coefficient (JSC). JSC compares the similarity between two images providing values between 0 and 1. Finally, the association between the components and the MUs from HDsEMG was assessed.Main results: All the MU-matched components had JSC>0.38, indicating they were repeatable and accounted for about one-third of the HDsEMG-detected MUs (1.8±1.6 matches over 4.9±1.8 MUs). The repeatable components (JSC>0.38) represented 14% of the total components (6.5±3.3 components). These findings align with our hypothesis that intra-sequence repeatability can differentiate putative MUs from noise and can be used for data reduction.Significance: This study provides the foundation for developing stand-alone methods to identify MU in UUS sequences and towards real-time imaging of MUs. These methods are relevant for studying muscle neuromechanics and designing novel neural interfaces.
  •  
4.
  • Tanveer, M Asjid, et al. (författare)
  • Deep learning-based auditory attention decoding in listeners with hearing impairment
  • 2024
  • Ingår i: Journal of Neural Engineering. - : IOP Publishing Ltd. - 1741-2560 .- 1741-2552. ; 21:3
  • Tidskriftsartikel (refereegranskat)abstract
    • This study develops a deep learning method for fast auditory attention decoding (AAD) using electroencephalography (EEG) from listeners with hearing impairment. It addresses three classification tasks: differentiating noise from speech-in-noise, classifying the direction of attended speech (left vs. right) and identifying the activation status of hearing aid noise reduction (NR) algorithms (OFF vs. ON). These tasks contribute to our understanding of how hearing technology influences auditory processing in the hearing-impaired population. Method: Deep convolutional neural network (DCNN) models were designed for each task. Two training strategies were employed to clarify the impact of data splitting on AAD tasks: inter-trial, where the testing set used classification windows from trials that the training set hadn't seen, and intra-trial, where the testing set used unseen classification windows from trials where other segments were seen during training. The models were evaluated on EEG data from 31 participants with hearing impairment, listening to competing talkers amidst background noise. Results: Using 1-second classification windows, DCNN models achieve accuracy (ACC) of 69.8\%, 73.3\% and 82.9\% and area-under-curve (AUC) of 77.2\%, 80.6\% and 92.1\% for the three tasks respectively on inter-trial strategy. In the intra-trial strategy, they achieved ACC of 87.9\%, 80.1\% and 97.5\%, along with AUC of 94.6\%, 89.1\%, and 99.8\%. Our DCNN models show good performance on short 1-second EEG samples, making them suitable for real-world applications. Conclusion: Our DCNN models successfully addressed three tasks with short 1-second EEG windows from participants with hearing impairment, showcasing their potential. While the inter-trial strategy demonstrated promise for assessing AAD, the intra-trial approach yielded inflated results, underscoring the important role of proper data splitting in EEG-based AAD tasks. Significance: Our findings showcase the promising potential of EEG-based tools for assessing auditory attention in clinical contexts and advancing hearing technology, while also promoting further exploration of alternative deep learning architectures and their potential constraints.
  •  
5.
  • Wilroth, Johanna, et al. (författare)
  • Improving EEG-based decoding of the locus of auditory attention through domain adaptation
  • 2023
  • Ingår i: Journal of Neural Engineering. - : Institute of Physics (IOP). - 1741-2560 .- 1741-2552. ; 20:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. This paper presents a novel domain adaptation (DA) framework to enhance the accuracy of electroencephalography (EEG)-based auditory attention classification, specifically for classifying the direction (left or right) of attended speech. The framework aims to improve the performances for subjects with initially low classification accuracy, overcoming challenges posed by instrumental and human factors. Limited dataset size, variations in EEG data quality due to factors such as noise, electrode misplacement or subjects, and the need for generalization across different trials, conditions and subjects necessitate the use of DA methods. By leveraging DA methods, the framework can learn from one EEG dataset and adapt to another, potentially resulting in more reliable and robust classification models. Approach. This paper focuses on investigating a DA method, based on parallel transport, for addressing the auditory attention classification problem. The EEG data utilized in this study originates from an experiment where subjects were instructed to selectively attend to one of the two spatially separated voices presented simultaneously. Main results. Significant improvement in classification accuracy was observed when poor data from one subject was transported to the domain of good data from different subjects, as compared to the baseline. The mean classification accuracy for subjects with poor data increased from 45.84% to 67.92%. Specifically, the highest achieved classification accuracy from one subject reached 83.33%, a substantial increase from the baseline accuracy of 43.33%. Significance. The findings of our study demonstrate the improved classification performances achieved through the implementation of DA methods. This brings us a step closer to leveraging EEG in neuro-steered hearing devices. © 2023 The Author(s). Published by IOP Publishing Ltd.
  •  
6.
  • Chen, Xing, et al. (författare)
  • Chronic stability of a neuroprosthesis comprising multiple adjacent Utah arrays in monkeys
  • 2023
  • Ingår i: Journal of Neural Engineering. - 1741-2560 .- 1741-2552. ; 20:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. Electrical stimulation of visual cortex via a neuroprosthesis induces the perception of dots of light ('phosphenes'), potentially allowing recognition of simple shapes even after decades of blindness. However, restoration of functional vision requires large numbers of electrodes, and chronic, clinical implantation of intracortical electrodes in the visual cortex has only been achieved using devices of up to 96 channels. We evaluated the efficacy and stability of a 1024-channel neuroprosthesis system in non-human primates (NHPs) over more than 3 years to assess its suitability for long-term vision restoration. Approach. We implanted 16 microelectrode arrays (Utah arrays) consisting of 8 x 8 electrodes with iridium oxide tips in the primary visual cortex (V1) and visual area 4 (V4) of two sighted macaques. We monitored the animals' health and measured electrode impedances and neuronal signal quality by calculating signal-to-noise ratios of visually driven neuronal activity, peak-to-peak voltages of the waveforms of action potentials, and the number of channels with high-amplitude signals. We delivered cortical microstimulation and determined the minimum current that could be perceived, monitoring the number of channels that successfully yielded phosphenes. We also examined the influence of the implant on a visual task after 2-3 years of implantation and determined the integrity of the brain tissue with a histological analysis 3-3.5 years post-implantation. Main results. The monkeys remained healthy throughout the implantation period and the device retained its mechanical integrity and electrical conductivity. However, we observed decreasing signal quality with time, declining numbers of phosphene-evoking electrodes, decreases in electrode impedances, and impaired performance on a visual task at visual field locations corresponding to implanted cortical regions. Current thresholds increased with time in one of the two animals. The histological analysis revealed encapsulation of arrays and cortical degeneration. Scanning electron microscopy on one array revealed degradation of IrOx coating and higher impedances for electrodes with broken tips. Significance. Long-term implantation of a high-channel-count device in NHP visual cortex was accompanied by deformation of cortical tissue and decreased stimulation efficacy and signal quality over time. We conclude that improvements in device biocompatibility and/or refinement of implantation techniques are needed before future clinical use is feasible.
  •  
7.
  • Donahue, Mary, et al. (författare)
  • Wireless optoelectronic devices for vagus nerve stimulation in mice
  • 2022
  • Ingår i: Journal of Neural Engineering. - : IOP Publishing. - 1741-2560 .- 1741-2552. ; 19:6, s. 066031-
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. Vagus nerve stimulation (VNS) is a promising approach for the treatment of a wide variety of debilitating conditions, including autoimmune diseases and intractable epilepsy. Much remains to be learned about the molecular mechanisms involved in vagus nerve regulation of organ function. Despite an abundance of well-characterized rodent models of common chronic diseases, currently available technologies are rarely suitable for the required long-term experiments in freely moving animals, particularly experimental mice. Due to challenging anatomical limitations, many relevant experiments require miniaturized, less invasive, and wireless devices for precise stimulation of the vagus nerve and other peripheral nerves of interest. Our objective is to outline possible solutions to this problem by using nongenetic light-based stimulation. Approach. We describe how to design and benchmark new microstimulation devices that are based on transcutaneous photovoltaic stimulation. The approach is to use wired multielectrode cuffs to test different stimulation patterns, and then build photovoltaic stimulators to generate the most optimal patterns. We validate stimulation through heart rate analysis. Main results. A range of different stimulation geometries are explored with large differences in performance. Two types of photovoltaic devices are fabricated to deliver stimulation: photocapacitors and photovoltaic flags. The former is simple and more compact, but has limited efficiency. The photovoltaic flag approach is more elaborate, but highly efficient. Both can be used for wireless actuation of the vagus nerve using light impulses. Significance. These approaches can enable studies in small animals that were previously challenging, such as long-term in vivo studies for mapping functional vagus nerve innervation. This new knowledge may have potential to support clinical translation of VNS for treatment of select inflammatory and neurologic diseases.
  •  
8.
  • Lienemann, Samuel, et al. (författare)
  • Stretchable gold nanowire-based cuff electrodes for low-voltage peripheral nerve stimulation
  • 2021
  • Ingår i: Journal of Neural Engineering. - : IOP PUBLISHING LTD. - 1741-2560 .- 1741-2552. ; 18:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. Electrical stimulation of the peripheral nervous system (PNS) can treat various diseases and disorders, including the healing process after nerve injury. A major challenge when designing electrodes for PNS stimulation is the mechanical mismatch between the nerve and the device, which can lead to non-conformal contact, tissue damage and inefficient stimulation due to current leakage. Soft and stretchable cuff electrodes promise to tackle these challenges but often have limited performance and rely on unconventional materials. The aim of this study is to develop a high performance soft and stretchable cuff electrode based on inert materials for low-voltage nerve stimulation. Approach. We developed 50 mu m thick stretchable cuff electrodes based on silicone rubber, gold nanowire conductors and platinum coated nanowire electrodes. The electrode performance was characterized under strain cycling to assess the durability of the electrodes. The stimulation capability of the cuff electrodes was evaluated in an in vivo sciatic nerve rat model by measuring the electromyography response to various stimulation pulses. Main results. The stretchable cuff electrodes showed excellent stability for 50% strain cycling and one million stimulation pulses. Saturated homogeneous stimulation of the sciatic nerve was achieved at only 200 mV due to the excellent conformability of the electrodes, the low conductor resistance (0.3 Ohm sq(-1)), and the low electrode impedance. Significance. The developed stretchable cuff electrode combines favourable mechanical properties and good electrode performance with inert and stable materials, making it ideal for low power supply applications within bioelectronic medicine.
  •  
9.
  • Missey, Florian, et al. (författare)
  • Organic electrolytic photocapacitors for stimulation of the mouse somatosensory cortex
  • 2021
  • Ingår i: Journal of Neural Engineering. - : IOP Publishing Ltd. - 1741-2560 .- 1741-2552. ; 18:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. For decades electrical stimulation has been used in neuroscience to investigate brain networks and been deployed clinically as a mode of therapy. Classically, all methods of electrical stimulation require implanted electrodes to be connected in some manner to an apparatus which provides power for the stimulation itself. Approach. We show the use of novel organic electronic devices, specifically organic electrolytic photocapacitors (OEPCs), which can be activated when illuminated with deep-red wavelengths of light and correspondingly do not require connections with external wires or power supplies when implanted at various depths in vivo. Main results. We stimulated cortical brain tissue of mice with devices implanted subcutaneously, as well as beneath both the skin and skull to demonstrate a wireless stimulation of the whisker motor cortex. Devices induced both a behavior response (whisker movement) and a sensory response in the corresponding sensory cortex. Additionally, we showed that coating OEPCs with a thin layer of a conducting polymer formulation (PEDOT:PSS) significantly increases their charge storage capacity, and can be used to further optimize the applied photoelectrical stimulation. Significance. Overall, this new technology can provide an on-demand electrical stimulation by simply using an OEPC and a deep-red wavelength illumination. Wires and interconnects to provide power to implanted neurostimulation electrodes are often problematic in freely-moving animal research and with implanted electrodes for long-term therapy in patients. Our wireless brain stimulation opens new perspectives for wireless electrical stimulation for applications in fundamental neurostimulation and in chronic therapy.
  •  
10.
  • Sagastegui Alva, Patrick G., et al. (författare)
  • Wearable multichannel haptic device for encoding proprioception in the upper limb
  • 2020
  • Ingår i: Journal of Neural Engineering. - : IOP Publishing. - 1741-2560 .- 1741-2552. ; 17:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the design, implementation, and evaluation of a wearable multichannel haptic system. The device is a wireless closed-loop armband driven by surface electromyography (EMG) and provides sensory feedback encoding proprioception. The study is motivated by restoring proprioception information in upper limb prostheses. Approach. The armband comprises eight vibrotactile actuators that generate distributed patterns of mechanical waves around the limb to stimulate perception and to transfer proportional information on the arm motion. An experimental study was conducted to assess: the sensory threshold in eight locations around the forearm, the user adaptation to the sensation provided by the device, the user performance in discriminating multiple stimulation levels, and the device performance in coding proprioception using four spatial patterns of stimulation. Eight able-bodied individuals performed reaching tasks by controlling a cursor with an EMG interface in a virtual environment. Vibrotactile patterns were tested with and without visual information on the cursor position with the addition of a random rotation of the reference control system to disturb the natural control and proprioception. Main results. The sensation threshold depended on the actuator position and increased over time. The maximum resolution for stimuli discrimination was four. Using this resolution, four patterns of vibrotactile activation with different spatial and magnitude properties were generated to evaluate their performance in enhancing proprioception. The optimal vibration pattern varied among the participants. When the feedback was used in closed-loop control with the EMG interface, the task success rate, completion time, execution efficiency, and average target-cursor distance improved for the optimal stimulation pattern compared to the condition without visual or haptic information on the cursor position. Significance. The results indicate that the vibrotactile device enhanced the participants’ perceptual ability, suggesting that the proposed closed-loop system has the potential to code proprioception and enhance user performance in the presence of perceptual perturbation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17
Typ av publikation
tidskriftsartikel (17)
Typ av innehåll
refereegranskat (17)
Författare/redaktör
Glowacki, Eric (2)
Bernhardsson, Bo (2)
Muceli, Silvia, 1981 (2)
Alickovic, Emina (2)
Rohlén, Robin (2)
Skoglund, Martin (2)
visa fler...
Antfolk, Christian (2)
Malesevic, Nebojsa (2)
Farina, Dario (2)
Donahue, Mary (1)
Ortiz Catalan, Max J ... (1)
Sahalianov, Ihor (1)
Silverå Ejneby, Mali ... (1)
Jakesova, Marie (1)
Tybrandt, Klas (1)
Wang, Feng (1)
Björkman, Anders (1)
Williamson, Adam (1)
Thorbergsson, Palmi ... (1)
Schouenborg, Jens (1)
Earley, Eric, 1989 (1)
Leon, Miguel (1)
Grönlund, Christer (1)
Wårdell, Karin (1)
Vogel, Dorian (1)
Hemm-Ode, Simone (1)
Boehler, Christian (1)
Asplund, Maria, 1978 ... (1)
Sandvig, Axel (1)
Sandvig, Ioanna (1)
Farnebo, Simon (1)
Heskebeck, Frida (1)
Hult, Henrik, 1975- (1)
Botzanowski, Boris (1)
Missey, Florian (1)
Acerbo, Emma (1)
Olofsson, Peder S. (1)
Migliaccio, Ludovico (1)
Zbinden, Jan, 1994 (1)
Caravaca, April S (1)
Åstrand, Elaine (1)
Pequito, Sergio (1)
Chen, Xing (1)
Kooijmans, Roxana (1)
Klink, Peter Christi ... (1)
Roelfsema, Pieter Ro ... (1)
Lienemann, Samuel (1)
Atashzar, S. Farokh (1)
Derek, Vedran (1)
Botter, Alberto (1)
visa färre...
Lärosäte
Linköpings universitet (6)
Lunds universitet (6)
Chalmers tekniska högskola (4)
Umeå universitet (3)
Karolinska Institutet (2)
Göteborgs universitet (1)
visa fler...
Kungliga Tekniska Högskolan (1)
Uppsala universitet (1)
Mälardalens universitet (1)
Blekinge Tekniska Högskola (1)
visa färre...
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (12)
Teknik (9)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy