SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1748 717X srt2:(2020-2024)"

Sökning: L773:1748 717X > (2020-2024)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adrian, Gabriel, et al. (författare)
  • Primary tumor volume and prognosis for patients with p16-positive and p16-negative oropharyngeal squamous cell carcinoma treated with radiation therapy
  • 2022
  • Ingår i: Radiation Oncology. - : Springer Nature. - 1748-717X. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The prescribed radiation dose to patients with oropharyngeal squamous cell carcinoma (OPSCC) is standardized, even if the prognosis for individual patients may differ. Easy-at-hand pre-treatment risk stratification methods are valuable to individualize therapy. In the current study we assessed the prognostic impact of primary tumor volume for p16-positive and p16-negative tumors and in relationship to other prognostic factors for outcome in patients with OPSCC treated with primary radiation therapy (RT). Methods: Five hundred twenty-three OPSCC patients with p16-status treated with primary RT (68.0 Gy to 73.1 Gy in 7 weeks, or 68.0 Gy in 4.5 weeks), with or without concurrent chemotherapy, within three prospective trials were included in the study. Local failure (LF), progression free survival (PFS) and overall survival (OS) in relationship to the size of the primary gross tumor volume (GTV-T) and other prognostic factors were investigated. Efficiency of intensified RT (RT with total dose 73.1 Gy or given within 4.5 weeks) was analyzed in relationship to tumor volume. Results: The volume of GTV-T and p16-status were found to be the strongest prognostic markers for LF, PFS and OS. For p16-positive tumors, an increase in tumor volume had a significantly higher negative prognostic impact compared with p16-negative tumors. Within a T-classification, patients with a smaller tumor, compared with a larger tumor, had a better prognosis. The importance of tumor volume remained after adjusting for nodal status, age, performance status, smoking status, sex, and hemoglobin-level. The adjusted hazard ratio for OS per cm3 increase in tumor volume was 2.3% (95% CI 0–4.9) for p16-positive and 1.3% (95% 0.3–2.2) for p16-negative. Exploratory analyses suggested that intensified RT could mitigate the negative impact of a large tumor volume. Conclusions: Outcome for patients with OPSCC treated with RT is largely determined by tumor volume, even when adjusting for other established prognostic factors. Tumor volume is significantly more influential for patients with p16-positive tumors. Patients with large tumor volumes might benefit by intensified RT to improve survival.
  •  
2.
  • Björeland, Ulrika, et al. (författare)
  • Hyaluronic acid spacer in prostate cancer radiotherapy : dosimetric effects, spacer stability and long-term toxicity and PRO in a phase II study
  • 2023
  • Ingår i: Radiation Oncology. - : BioMed Central (BMC). - 1748-717X. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Perirectal spacers may be beneficial to reduce rectal side effects from radiotherapy (RT). Here, we present the impact of a hyaluronic acid (HA) perirectal spacer on rectal dose as well as spacer stability, long-term gastrointestinal (GI) and genitourinary (GU) toxicity and patient-reported outcome (PRO).METHODS: In this phase II study 81 patients with low- and intermediate-risk prostate cancer received transrectal injections with HA before external beam RT (78 Gy in 39 fractions). The HA spacer was evaluated with MRI four times; before (MR0) and after HA-injection (MR1), at the middle (MR2) and at the end (MR3) of RT. GI and GU toxicity was assessed by physician for up to five years according to the RTOG scale. PROs were collected using the Swedish National Prostate Cancer Registry and Prostate cancer symptom scale questionnaires.RESULTS: There was a significant reduction in rectal V70% (54.6 Gy) and V90% (70.2 Gy) between MR0 and MR1, as well as between MR0 to MR2 and MR3. From MR1 to MR2/MR3, HA thickness decreased with 28%/32% and CTV-rectum space with 19%/17% in the middle level. The cumulative late grade ≥ 2 GI toxicity at 5 years was 5% and the proportion of PRO moderate or severe overall bowel problems at 5 years follow-up was 12%. Cumulative late grade ≥ 2 GU toxicity at 5 years was 12% and moderate or severe overall urinary problems at 5 years were 10%.CONCLUSION: We show that the HA spacer reduced rectal dose and long-term toxicity.
  •  
3.
  •  
4.
  • Freislederer, P., et al. (författare)
  • Recent advanced in Surface Guided Radiation Therapy
  • 2020
  • Ingår i: Radiation oncology (London, England). - : Springer Science and Business Media LLC. - 1748-717X. ; 15:1
  • Forskningsöversikt (refereegranskat)abstract
    • The growing acceptance and recognition of Surface Guided Radiation Therapy (SGRT) as a promising imaging technique has supported its recent spread in a large number of radiation oncology facilities. Although this technology is not new, many aspects of it have only recently been exploited. This review focuses on the latest SGRT developments, both in the field of general clinical applications and special techniques.SGRT has a wide range of applications, including patient positioning with real-time feedback, patient monitoring throughout the treatment fraction, and motion management (as beam-gating in free-breathing or deep-inspiration breath-hold). Special radiotherapy modalities such as accelerated partial breast irradiation, particle radiotherapy, and pediatrics are the most recent SGRT developments.The fact that SGRT is nowadays used at various body sites has resulted in the need to adapt SGRT workflows to each body site. Current SGRT applications range from traditional breast irradiation, to thoracic, abdominal, or pelvic tumor sites, and include intracranial localizations.Following the latest SGRT applications and their specifications/requirements, a stricter quality assurance program needs to be ensured. Recent publications highlight the need to adapt quality assurance to the radiotherapy equipment type, SGRT technology, anatomic treatment sites, and clinical workflows, which results in a complex and extensive set of tests.Moreover, this review gives an outlook on the leading research trends. In particular, the potential to use deformable surfaces as motion surrogates, to use SGRT to detect anatomical variations along the treatment course, and to help in the establishment of personalized patient treatment (optimized margins and motion management strategies) are increasingly important research topics. SGRT is also emerging in the field of patient safety and integrates measures to reduce common radiotherapeutic risk events (e.g. facial and treatment accessories recognition).This review covers the latest clinical practices of SGRT and provides an outlook on potential applications of this imaging technique. It is intended to provide guidance for new users during the implementation, while triggering experienced users to further explore SGRT applications.
  •  
5.
  • Gram, D., et al. (författare)
  • Residual positioning errors and uncertainties for pediatric craniospinal irradiation and the impact of image guidance
  • 2020
  • Ingår i: Radiation Oncology. - : Springer Science and Business Media LLC. - 1748-717X. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Optimal alignment is of utmost importance when treating pediatric patients with craniospinal irradiation (CSI), especially with regards to field junctions and multiple isocenters and techniques applying high dose gradients. Here, we investigated the setup errors and uncertainties for pediatric CSI using different setup verification protocols. Methods A total of 38 pediatric patients treated with CSI were identified for whom treatment records and setup images were available. The setup images were registered retrospectively to the reference image using an automated tool and matching on bony anatomy, subsequently, the impact of different correction protocols was simulated. Results For an action-level (AL)-protocol and a non-action level (NAL)-protocol, the translational residual setup error can be as large as 24 mm for an individual patient during a single fraction, and the rotational error as large as 6.1 degrees. With daily IGRT, the maximum setup errors were reduced to 1 mm translational and 5.4 degrees rotational versus 1 mm translational and 2.4 degrees rotational for 3- and 6- degrees of freedom (DoF) couch shifts, respectively. With a daily 6-DoF IGRT protocol for a wide field junction irradiation technique, the residual positioning uncertainty was below 1 mm and 1 degrees for translational and rotational directions, respectively. The largest rotational uncertainty was found for the patients' roll even though this was the least common type of rotational error, while the largest translational uncertainty was found in the patients' anterior-posterior-axis. Conclusions These results allow for informed margin calculation and robust optimization of treatments. Daily IGRT is the superior choice for setup of pediatric patients treated with CSI, although centers that do not have this option could use the results presented here to improve their margins and uncertainty estimates for a more accurate treatment alignment.
  •  
6.
  • Lempart, Michael, et al. (författare)
  • Pelvic U-Net : multi-label semantic segmentation of pelvic organs at risk for radiation therapy anal cancer patients using a deeply supervised shuffle attention convolutional neural network
  • 2022
  • Ingår i: Radiation Oncology. - : Springer Science and Business Media LLC. - 1748-717X. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Delineation of organs at risk (OAR) for anal cancer radiation therapy treatment planning is a manual and time-consuming process. Deep learning-based methods can accelerate and partially automate this task. The aim of this study was to develop and evaluate a deep learning model for automated and improved segmentations of OAR in the pelvic region. Methods: A 3D, deeply supervised U-Net architecture with shuffle attention, referred to as Pelvic U-Net, was trained on 143 computed tomography (CT) volumes, to segment OAR in the pelvic region, such as total bone marrow, rectum, bladder, and bowel structures. Model predictions were evaluated on an independent test dataset (n = 15) using the Dice similarity coefficient (DSC), the 95th percentile of the Hausdorff distance (HD95), and the mean surface distance (MSD). In addition, three experienced radiation oncologists rated model predictions on a scale between 1–4 (excellent, good, acceptable, not acceptable). Model performance was also evaluated with respect to segmentation time, by comparing complete manual delineation time against model prediction time without and with manual correction of the predictions. Furthermore, dosimetric implications to treatment plans were evaluated using different dose-volume histogram (DVH) indices. Results: Without any manual corrections, mean DSC values of 97%, 87% and 94% were found for total bone marrow, rectum, and bladder. Mean DSC values for bowel cavity, all bowel, small bowel, and large bowel were 95%, 91%, 87% and 81%, respectively. Total bone marrow, bladder, and bowel cavity segmentations derived from our model were rated excellent (89%, 93%, 42%), good (9%, 5%, 42%), or acceptable (2%, 2%, 16%) on average. For almost all the evaluated DVH indices, no significant difference between model predictions and manual delineations was found. Delineation time per patient could be reduced from 40 to 12 min, including manual corrections of model predictions, and to 4 min without corrections. Conclusions: Our Pelvic U-Net led to credible and clinically applicable OAR segmentations and showed improved performance compared to previous studies. Even though manual adjustments were needed for some predicted structures, segmentation time could be reduced by 70% on average. This allows for an accelerated radiation therapy treatment planning workflow for anal cancer patients.
  •  
7.
  • Lerner, Minna, et al. (författare)
  • Clinical validation of a commercially available deep learning software for synthetic CT generation for brain
  • 2021
  • Ingår i: Radiation Oncology. - : Springer Science and Business Media LLC. - 1748-717X. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Most studies on synthetic computed tomography (sCT) generation for brain rely on in-house developed methods. They often focus on performance rather than clinical feasibility. Therefore, the aim of this work was to validate sCT images generated using a commercially available software, based on a convolutional neural network (CNN) algorithm, to enable MRI-only treatment planning for the brain in a clinical setting. Methods: This prospective study included 20 patients with brain malignancies of which 14 had areas of resected skull bone due to surgery. A Dixon magnetic resonance (MR) acquisition sequence for sCT generation was added to the clinical brain MR-protocol. The corresponding sCT images were provided by the software MRI Planner (Spectronic Medical AB, Sweden). sCT images were rigidly registered and resampled to CT for each patient. Treatment plans were optimized on CT and recalculated on sCT images for evaluation of dosimetric and geometric endpoints. Further analysis was also performed for the post-surgical cases. Clinical robustness in patient setup verification was assessed by rigidly registering cone beam CT (CBCT) to sCT and CT images, respectively. Results: All sCT images were successfully generated. Areas of bone resection due to surgery were accurately depicted. Mean absolute error of the sCT images within the body contour for all patients was 62.2 ± 4.1 HU. Average absorbed dose differences were below 0.2% for parameters evaluated for both targets and organs at risk. Mean pass rate of global gamma (1%/1 mm) for all patients was 100.0 ± 0.0% within PTV and 99.1 ± 0.6% for the full dose distribution. No clinically relevant deviations were found in the CBCT-sCT vs CBCT-CT image registrations. In addition, mean values of voxel-wise patient specific geometric distortion in the Dixon images for sCT generation were below 0.1 mm for soft tissue, and below 0.2 mm for air and bone. Conclusions: This work successfully validated a commercially available CNN-based software for sCT generation. Results were comparable for sCT and CT images in both dosimetric and geometric evaluation, for both patients with and without anatomical anomalies. Thus, MRI Planner is feasible to use for radiotherapy treatment planning of brain tumours.
  •  
8.
  • Mannerberg, Annika, et al. (författare)
  • Dosimetric effects of adaptive prostate cancer radiotherapy in an MR-linac workflow
  • 2020
  • Ingår i: Radiation oncology (London, England). - : Springer Science and Business Media LLC. - 1748-717X. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The purpose was to evaluate the dosimetric effects in prostate cancer treatment caused by anatomical changes occurring during the time frame of adaptive replanning in a magnetic resonance linear accelerator (MR-linac) workflow. METHODS: Two MR images (MR1 and MR2) were acquired with 30 min apart for each of the 35 patients enrolled in this study. The clinical target volume (CTV) and organs at risk (OARs) were delineated based on MR1. Using a synthetic CT (sCT), ultra-hypofractionated VMAT treatment plans were created for MR1, with three different planning target volume (PTV) margins of 7 mm, 5 mm and 3 mm. The three treatment plans of MR1, were recalculated onto MR2 using its corresponding sCT. The dose distribution of MR2 represented delivered dose to the patient after 30 min of adaptive replanning, omitting motion correction before beam on. MR2 was registered to MR1, using deformable registration. Using the inverse deformation, the structures of MR1 was deformed to fit MR2 and anatomical changes were quantified. For dose distribution comparison the dose distribution of MR2 was warped to the geometry MR1. RESULTS: The mean center of mass vector offset for the CTV was 1.92 mm [0.13 - 9.79 mm]. Bladder volume increase ranged from 12.4 to 133.0% and rectum volume difference varied between -10.9 and 38.8%. Using the conventional 7 mm planning target volume (PTV) margin the dose reduction to the CTV was 1.1%. Corresponding values for 5 mm and 3 mm PTV margin were 2.0% and 4.2% respectively. The dose to the PTV and OARs also decreased from D1 to D2, for all PTV margins evaluated. Statistically significant difference was found for CTV Dmin between D1 and D2 for the 3 mm PTV margin (p < 0.01). CONCLUSIONS: A target underdosage caused by anatomical changes occurring during the reported time frame for adaptive replanning MR-linac workflows was found. Volume changes in both bladder and rectum caused large prostate displacements. This indicates the importance of thorough position verification before treatment delivery and that the workflow needs to speed up before introducing margin reduction.
  •  
9.
  • Nilsson, Martin P., et al. (författare)
  • Patterns of recurrence in anal cancer : A detailed analysis
  • 2020
  • Ingår i: Radiation Oncology. - : Springer Science and Business Media LLC. - 1748-717X. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Anal cancer is a rare disease, which might be the reason for the "one size fits all" approach still used for radiotherapy target contouring. To refine and individualize future guidelines, detailed and contemporary pattern of recurrence studies are needed. Methods: Consecutive anal cancer patients, all treated with curative intent intensity-modulated radiotherapy (IMRT), were retrospectively studied (n = 170). Data was extracted from medical records and radiological images. Radiotherapy planning CT's and treatment plans were reviewed, and recurrences were mapped and categorized according to radiation dose. Results: The mean dose to the primary tumor was 59.0 Gy. With a median follow-up of 50 months (range 14-117 months), 5-year anal cancer specific survival was 86.1%. Only 1 of 20 local recurrences was located outside the high dose (CTVT) volume. More patients experienced a distant recurrence (n = 34; 20.0%) than a locoregional recurrence (n = 24; 14.1%). Seven patients (4.2%) had a common iliac and/or para-aortic (CI/PA) recurrence. External iliac lymph node involvement (P = 0.04), and metastases in ≥3 inguinal or pelvic lymph node regions (P = 0.02) were associated with a 15-18% risk of CI/PA recurrence. Following chemoradiotherapy, 6 patients with recurrent or primary metastatic CI/PA lymph nodes were free of recurrence at last follow-up. The overall rate of ano-inguinal lymphatic drainage (AILD) recurrence was 2 of 170 (1.2%), and among patients with inguinal metastases at initial diagnosis it was 2 of 65 (3.1%). Conclusions: We conclude that other measures than increased margins around the primary tumor are needed to improve local control. Furthermore, metastatic CI/PA lymph nodes, either at initial diagnosis or in the recurrent setting, should be considered potentially curable. Patients with certain patterns of metastatic pelvic lymph nodes might be at an increased risk of harboring tumor cells also in the CI/PA lymph nodes.
  •  
10.
  • Nilsson, Martin P., et al. (författare)
  • Sarcopenia and dosimetric parameters in relation to treatment-related leukopenia and survival in anal cancer
  • 2021
  • Ingår i: Radiation Oncology. - : Springer Science and Business Media LLC. - 1748-717X. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Treatment-related white blood cell (WBC) toxicity has been associated with an inferior prognosis in different malignancies, including anal cancer. The aim of the present study was to investigate predictors of WBC grade ≥ 3 (G3+) toxicity during chemoradiotherapy (CRT) of anal cancer. Methods: Consecutive patients with locally advanced (T2 ≥ 4 cm—T4 or N+) anal cancer scheduled for two cycles of concomitant 5-fluorouracil and mitomycin C chemotherapy were selected from an institutional database (n = 106). All received intensity modulated radiotherapy (IMRT; mean dose primary tumor 59.5 Gy; mean dose elective lymph nodes 45.1 Gy). Clinical data were extracted from medical records. The highest-grade WBC toxicity was recorded according to CTCAE version 5.0. Pelvic bone marrow (PBM) was retrospectively contoured and dose-volume histograms were generated. The planning CT was used to measure sarcopenia. Dosimetric, anthropometric, and clinical variables were tested for associations with WBC G3+ toxicity using the Mann–Whitney test and logistic regression. Cox proportional hazard regression was used to assess predictors for overall survival (OS) and anal cancer specific survival (ACSS). Results: WBC G3+ was seen in 50.9% of the patients, and 38.7% were sarcopenic. None of the dosimetric parameters showed an association with WBC G3+ toxicity. The most significant predictor of WBC G3+ toxicity was sarcopenia (adjusted OR 4.0; P = 0.002). Sarcopenia was also associated with an inferior OS (adjusted HR 3.9; P = 0.01), but not ACSS (P = 0.07). Sensitivity analysis did not suggest that the inferior prognosis for sarcopenic patients was a consequence of reduced doses of chemotherapy or a prolonged radiation treatment time. Patients who experienced WBC G3+ toxicity had an inferior OS and ACSS, even after adjustment for sarcopenia. Conclusions: Sarcopenia was associated with increased risks of both WBC G3+ toxicity and death following CRT for locally advanced anal cancer. In this study, radiation dose to PBM was not associated with WBC G3+ toxicity. However, PBM was not used as an organ at risk for radiotherapy planning purposes and doses to PBM were high, which may have obscured any dose–response relationships.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy