SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1754 6834 srt2:(2010-2014)"

Sökning: L773:1754 6834 > (2010-2014)

  • Resultat 1-10 av 44
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Garcia Sanchez, Rosa, et al. (författare)
  • Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering
  • 2010
  • Ingår i: Biotechnology for Biofuels. - : Springer Science and Business Media LLC. - 1754-6834. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Cost-effective fermentation of lignocellulosic hydrolysate to ethanol by Saccharomyces cerevisiae requires efficient mixed sugar utilization. Notably, the rate and yield of xylose and arabinose co-fermentation to ethanol must be enhanced. RESULTS: Evolutionary engineering was used to improve the simultaneous conversion of xylose and arabinose to ethanol in a recombinant industrial Saccharomyces cerevisiae strain carrying the heterologous genes for xylose and arabinose utilization pathways integrated in the genome. The evolved strain TMB3130 displayed an increased consumption rate of xylose and arabinose under aerobic and anaerobic conditions. Improved anaerobic ethanol production was achieved at the expense of xylitol and glycerol but arabinose was almost stoichiometrically converted to arabitol. Further characterization of the strain indicated that the selection pressure during prolonged continuous culture in xylose and arabinose medium resulted in the improved transport of xylose and arabinose as well as increased levels of the enzymes from the introduced fungal xylose pathway. No mutation was found in any of the genes from the pentose converting pathways. CONCLUSION: To the best of our knowledge, this is the first report that characterizes the molecular mechanisms for improved mixed-pentose utilization obtained by evolutionary engineering of a recombinant S. cerevisiae strain. Increased transport of pentoses and increased activities of xylose converting enzymes contributed to the improved phenotype.
  •  
2.
  • Ahlgren, Serina, et al. (författare)
  • Indirect land use changes of biofuel production - a review of modelling efforts and policy developments in the European Union
  • 2014
  • Ingår i: Biotechnology for Biofuels. - : Springer Science and Business Media LLC. - 1754-6834. ; 7
  • Forskningsöversikt (refereegranskat)abstract
    • The issue of indirect land use changes (ILUC) caused by the promotion of transport biofuels has attracted considerable attention in recent years. In this paper, we reviewed the current literature on modelling work to estimate emissions of greenhouse gases (GHG) caused by ILUC of biofuels. We also reviewed the development of ILUC policies in the EU. Our review of past modelling work revealed that most studies employ economic equilibrium modelling and focus on ethanol fuels, especially with maize as feedstock. It also revealed major variation in the results from the models, especially for biodiesel fuels. However, there has been some convergence of results over time, particularly for ethanol from maize, wheat and sugar cane. Our review of EU policy developments showed that the introduction of fuel-specific ILUC factors has been officially suggested by policymakers to deal with the ILUC of biofuels. The values proposed as ILUC factors in the policymaking process in the case of ethanol fuels are generally in line with the results of the latest modelling exercises, in particular for first-generation ethanol fuels from maize and sugar cane, while those for biodiesel fuels are somewhat higher. If the proposed values were introduced into EU policy, no (first-generation) biodiesel fuel would be able to comply with the EU GHG saving requirements. We identified a conflict between the demand from EU policymakers for exact, highly specific values and the capacity of the current models to supply results with that level of precision. We concluded that alternative policy approaches to ILUC factors should be further explored.
  •  
3.
  • Barta, Zsolt, et al. (författare)
  • Effects of steam pretreatment and co-production with ethanol on the energy efficiency and process economics of combined biogas, heat and electricity production from industrial hemp
  • 2013
  • Ingår i: Biotechnology for Biofuels. - : Springer Science and Business Media LLC. - 1754-6834. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The study presented here has used the commercial flow sheeting program Aspen Plus (TM) to evaluate techno-economic aspects of large-scale hemp-based processes for producing transportation fuels. The co-production of biogas, district heat and power from chopped and steam-pretreated hemp, and the co-production of ethanol, biogas, heat and power from steam-pretreated hemp were analysed. The analyses include assessments of heat demand, energy efficiency and process economics in terms of annual cash flows and minimum biogas and ethanol selling prices (MBSP and MESP). Results: Producing biogas, heat and power from chopped hemp has the highest overall energy efficiency, 84% of the theoretical maximum (based on lower heating values), providing that the maximum capacity of district heat is delivered. The combined production of ethanol, biogas, heat and power has the highest energy efficiency (49%) if district heat is not produced. Neither the inclusion of steam pretreatment nor co-production with ethanol has a large impact on the MBSP. Ethanol is more expensive to produce than biogas is, but this is compensated for by its higher market price. None of the scenarios examined are economically viable, since the MBSP (EUR 103-128 per MWh) is higher than the market price of biogas (EUR 67 per MWh). The largest contribution to the cost is the cost of feedstock. Decreasing the retention time in the biogas process for low solids streams by partly replacing continuous stirred tank reactors by high-rate bioreactors decreases the MBSP. Also, recycling part of the liquid from the effluent from anaerobic digestion decreases the MBSP. The production and prices of methane and ethanol influence the process economics more than the production and prices of electricity and district heat. Conclusions: To reduce the production cost of ethanol and biogas from biomass, the use of feedstocks that are cheaper than hemp, give higher output of ethanol and biogas, or combined production with higher value products are primarily suggested. Further, practical investigations on increased substrate concentration in biogas and ethanol production, recycling of the liquid in anaerobic digestion and separation of low solids flows into solid and a liquid fraction for improved reactor applications deserves further attention.
  •  
4.
  • Barta, Zsolt, et al. (författare)
  • Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process.
  • 2010
  • Ingår i: Biotechnology for Biofuels. - : Springer Science and Business Media LLC. - 1754-6834. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: BACKGROUND: Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus™. Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation. RESULTS: Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%), based on the lower heating values, than the reference case (81%). Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L), including the reference case. CONCLUSIONS: Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat.
  •  
5.
  • Bergdahl, Basti, et al. (författare)
  • Dynamic metabolomics differentiates between carbon and energy starvation in recombinant Saccharomyces cerevisiae fermenting xylose
  • 2012
  • Ingår i: Biotechnology for Biofuels. - : Springer Science and Business Media LLC. - 1754-6834. ; 5:34
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The concerted effects of changes in gene expression due to changes in the environment are ultimately reflected in the metabolome. Dynamics of metabolite concentrations under a certain condition can therefore give a description of the cellular state with a high degree of functional information. We used this potential to evaluate the metabolic status of two recombinant strains of Saccharomyces cerevisiae during anaerobic batch fermentation of a glucose/xylose mixture. Two isogenic strains were studied, differing only in the pathways used for xylose assimilation: the oxidoreductive pathway with xylose reductase (XR) and xylitol dehydrogenase (XDH) or the isomerization pathway with xylose isomerase (XI). The isogenic relationship between the two strains ascertains that the observed responses are a result of the particular xylose pathway and not due to unknown changes in regulatory systems. An increased understanding of the physiological state of these strains is important for further development of efficient pentose-utilizing strains for bioethanol production. Results: Using LC-MS/MS we determined the dynamics in the concentrations of intracellular metabolites in central carbon metabolism, nine amino acids, the purine nucleotides and redox cofactors. The general response to the transition from glucose to xylose was increased concentrations of amino acids and TCA-cycle intermediates, and decreased concentrations of sugar phosphates and redox cofactors. The two strains investigated had significantly different uptake rates of xylose which led to an enhanced response in the XI-strain. Despite the difference in xylose uptake rate, the adenylate energy charge remained high and stable around 0.8 in both strains. In contrast to the adenylate pool, large changes were observed in the guanylate pool. Conclusions: The low uptake of xylose by the XI-strain led to several distinguished responses: depletion of key metabolites in glycolysis and NADPH, a reduced GTP/GDP ratio and accumulation of PEP and aromatic amino acids. These changes are strong indicators of carbon starvation. The XR/XDH-strain displayed few such traits. The coexistence of these traits and a stable adenylate charge indicates that xylose supplies energy to the cells but does not suppress a response similar to carbon starvation. Particular signals may play a role in the latter, of which the GTP/GMP ratio could be a candidate as it decreased significantly in both strains.
  •  
6.
  • Bondesson, Pia-Maria, et al. (författare)
  • Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid
  • 2013
  • Ingår i: Biotechnology for Biofuels. - : Springer Science and Business Media LLC. - 1754-6834. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Lignocellulosic biomass, such as corn stover, is a potential raw material for ethanol production. One step in the process of producing ethanol from lignocellulose is enzymatic hydrolysis, which produces fermentable sugars from carbohydrates present in the corn stover in the form of cellulose and hemicellulose. A pretreatment step is crucial to achieve efficient conversion of lignocellulosic biomass to soluble sugars, and later ethanol. This study has investigated steam pretreatment of corn stover, with and without sulphuric acid as catalyst, and examined the effect of residence time (5-10 min) and temperature (190-210 degrees C) on glucose and xylose recovery. The pretreatment conditions with and without dilute acid that gave the highest glucose yield were then used in subsequent experiments. Materials pretreated at the optimal conditions were subjected to simultaneous saccharification and fermentation (SSF) to produce ethanol, and remaining organic compounds were used to produce biogas by anaerobic digestion (AD). Results: The highest glucose yield achieved was 86%, obtained after pretreatment at 210 degrees C for 10 minutes in the absence of catalyst, followed by enzymatic hydrolysis. The highest yield using sulphuric acid, 78%, was achieved using pretreatment at 200 degrees C for 10 minutes. These two pretreatment conditions were investigated using two different process configurations. The highest ethanol and methane yields were obtained from the material pretreated in the presence of sulphuric acid. The slurry in this case was split into a solid fraction and a liquid fraction, where the solid fraction was used to produce ethanol and the liquid fraction to produce biogas. The total energy recovery in this case was 86% of the enthalpy of combustion energy in corn stover. Conclusions: The highest yield, comprising ethanol, methane and solids, was achieved using pretreatment in the presence of sulphuric acid followed by a process configuration in which the slurry from the pretreatment was divided into a solid fraction and a liquid fraction. The solid fraction was subjected to SSF, while the liquid fraction, together with the filtered residual from SSF, was used in AD. Using sulphuric acid in AD did not inhibit the reaction, which may be due to the low concentration of sulphuric acid used. In contrast, a pretreatment step without sulphuric acid resulted not only in higher concentrations of inhibitors, which affected the ethanol yield, but also in lower methane production.
  •  
7.
  • Bösch, Peter, et al. (författare)
  • Impact of dual temperature profile in dilute acid hydrolysis of spruce for ethanol production.
  • 2010
  • Ingår i: Biotechnology for Biofuels. - : Springer Science and Business Media LLC. - 1754-6834. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: BACKGROUND: The two-step dilute acid hydrolysis (DAH) of softwood is costly in energy demands and capital costs. However, it has the advantage that hydrolysis and subsequent removal of hemicellulose-derived sugars can be carried out under conditions of low severity, resulting in a reduction in the level of sugar degradation products during the more severe subsequent steps of cellulose hydrolysis. In this paper, we discuss a single-step DAH method that incorporates a temperature profile at two levels. This profile should simulate the two-step process while removing its major disadvantage, that is, the washing step between the runs, which leads to increased energy demand. RESULTS: The experiments were conducted in a reactor with a controlled temperature profile. The total dry matter content of the hydrolysate was up to 21.1% w/w, corresponding to a content of 15.5% w/w of water insoluble solids. The highest measured glucose yield, (18.3 g glucose per 100 g dry raw material), was obtained after DAH cycles of 3 min at 209 degrees C and 6 min at 211 degrees C with 1% H2SO4, which resulted in a total of 26.3 g solubilized C6 sugars per 100 g dry raw material. To estimate the remaining sugar potential, enzymatic hydrolysis (EH) of the solid fraction was also performed. EH of the solid residue increased the total level of solubilized C6 sugars to a maximum of 35.5 g per 100 g dry raw material when DAH was performed as described above (3 min at 210 degrees C and 2 min at 211 degrees C with 1% H2SO4). CONCLUSION: The dual-temperature DAH method did not yield decisively better results than the single-temperature, one-step DAH. When we compared the results with those of earlier studies, the hydrolysis performance was better than with the one-step DAH but not as well as that of the two-step, single-temperature DAH. Additional enzymatic hydrolysis resulted in lower levels of solubilized sugars compared with other studies on one-step DAH and two-step DAH followed by enzymatic hydrolysis. A two-step steam pretreatment with EH gave rise to a considerably higher sugar yield in this study.
  •  
8.
  • Demeke, Mekonnen M., et al. (författare)
  • Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering
  • 2013
  • Ingår i: Biotechnology for Biofuels. - : Springer Science and Business Media LLC. - 1754-6834. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The production of bioethanol from lignocellulose hydrolysates requires a robust, D-xylose-fermenting and inhibitor-tolerant microorganism as catalyst. The purpose of the present work was to develop such a strain from a prime industrial yeast strain, Ethanol Red, used for bioethanol production. Results: An expression cassette containing 13 genes including Clostridium phytofermentans XylA, encoding D-xylose isomerase (XI), and enzymes of the pentose phosphate pathway was inserted in two copies in the genome of Ethanol Red. Subsequent EMS mutagenesis, genome shuffling and selection in D-xylose-enriched lignocellulose hydrolysate, followed by multiple rounds of evolutionary engineering in complex medium with D-xylose, gradually established efficient D-xylose fermentation. The best-performing strain, GS1.11-26, showed a maximum specific D-xylose consumption rate of 1.1 g/g DW/h in synthetic medium, with complete attenuation of 35 g/L D-xylose in about 17 h. In separate hydrolysis and fermentation of lignocellulose hydrolysates of Arundo donax (giant reed), spruce and a wheat straw/hay mixture, the maximum specific D-xylose consumption rate was 0.36, 0.23 and 1.1 g/g DW inoculum/h, and the final ethanol titer was 4.2, 3.9 and 5.8% (v/v), respectively. In simultaneous saccharification and fermentation of Arundo hydrolysate, GS1.11-26 produced 32% more ethanol than the parent strain Ethanol Red, due to efficient D-xylose utilization. The high D-xylose fermentation capacity was stable after extended growth in glucose. Cell extracts of strain GS1.11-26 displayed 17-fold higher XI activity compared to the parent strain, but overexpression of XI alone was not enough to establish D-xylose fermentation. The high D-xylose consumption rate was due to synergistic interaction between the high XI activity and one or more mutations in the genome. The GS1.11-26 had a partial respiratory defect causing a reduced aerobic growth rate. Conclusions: An industrial yeast strain for bioethanol production with lignocellulose hydrolysates has been developed in the genetic background of a strain widely used for commercial bioethanol production. The strain uses glucose and D-xylose with high consumption rates and partial cofermentation in various lignocellulose hydrolysates with very high ethanol yield. The GS1.11-26 strain shows highly promising potential for further development of an all-round robust yeast strain for efficient fermentation of various lignocellulose hydrolysates.
  •  
9.
  • Erdei, Borbala, et al. (författare)
  • Ethanol production from mixtures of wheat straw and wheat meal
  • 2010
  • Ingår i: Biotechnology for Biofuels. - : Springer Science and Business Media LLC. - 1754-6834. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Bioethanol can be produced from sugar-rich, starch-rich (first generation; 1G) or lignocellulosic (second generation; 2G) raw materials. Integration of 2G ethanol with 1G could facilitate the introduction of the 2G technology. The capital cost per ton of fuel produced would be diminished and better utilization of the biomass can be achieved. It would, furthermore, decrease the energy demand of 2G ethanol production and also provide both 1G and 2G plants with heat and electricity. In the current study, steam-pretreated wheat straw (SPWS) was mixed with presaccharified wheat meal (PWM) and converted to ethanol in simultaneous saccharification and fermentation (SSF). Results: Both the ethanol concentration and the ethanol yield increased with increasing amounts of PWM in mixtures with SPWS. The maximum ethanol yield (99% of the theoretical yield, based on the available C6 sugars) was obtained with a mixture of SPWS containing 2.5% water-insoluble solids (WIS) and PWM containing 2.5% WIS, resulting in an ethanol concentration of 56.5 g/L. This yield was higher than those obtained with SSF of either SPWS (68%) or PWM alone (91%). Conclusions: Mixing wheat straw with wheat meal would be beneficial for both 1G and 2G ethanol production. However, increasing the proportion of WIS as wheat straw and the possibility of consuming the xylose fraction with a pentose-fermenting yeast should be further investigated.
  •  
10.
  • Erdei, Borbala, et al. (författare)
  • Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw
  • 2012
  • Ingår i: Biotechnology for Biofuels. - : Springer Science and Business Media LLC. - 1754-6834. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low. Results: Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS) combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS) unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS), resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L) did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases. Conclusions: Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and second-generation processes also increases the ethanol concentration, resulting in a reduction in the cost of the distillation step, thus improving the process economics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 44
Typ av publikation
tidskriftsartikel (43)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (44)
Författare/redaktör
Zacchi, Guido (12)
Galbe, Mats (8)
Olsson, Lisbeth, 196 ... (6)
Lidén, Gunnar (5)
Hahn-Hägerdal, Bärbe ... (4)
Gorwa-Grauslund, Mar ... (4)
visa fler...
Albers, Eva, 1966 (3)
Koppram, Rakesh, 198 ... (3)
Jönsson, Leif J (3)
Bettiga, Maurizio, 1 ... (2)
Björnsson, Lovisa (2)
Reczey, Kati (2)
Wallberg, Ola (2)
Larsson, Christer, 1 ... (2)
Franzén, Carl Johan, ... (2)
Ask, Magnus, 1983 (2)
Nielsen, Jens B, 196 ... (1)
Moritz, Thomas (1)
Taherzadeh Esfahani, ... (1)
Larsson, Christer (1)
Sauer, Uwe (1)
Westman, J (1)
Christakopoulos, Pau ... (1)
Ahlgren, Serina (1)
Di Lucia, Lorenzo (1)
Taherzadeh, M.J. (1)
Immerzeel, Peter (1)
Nielsen, Fredrik (1)
Norbeck, Joakim, 196 ... (1)
Johansson, Emma, 197 ... (1)
Wallace, Valeria (1)
Hodge, David (1)
Almeida, Joao (1)
Wiman, Magnus (1)
Heer, Dominik (1)
Karhumaa, Kaisa (1)
Bengtsson, Oskar (1)
Runquist, David (1)
Sanchez Nogue, Viole ... (1)
Skorupa Parachin, Ná ... (1)
Siewers, Verena, 197 ... (1)
Alriksson, Björn (1)
Cavka, Adnan (1)
Nilvebrant, Nils-Olo ... (1)
Mellerowicz, Ewa (1)
Rådström, Peter (1)
Matsakas, Leonidas (1)
Olofsson, Kim (1)
Mapelli, Valeria, 19 ... (1)
Raju Duraiswamy, Var ... (1)
visa färre...
Lärosäte
Lunds universitet (28)
Chalmers tekniska högskola (10)
Umeå universitet (3)
Luleå tekniska universitet (3)
Sveriges Lantbruksuniversitet (3)
RISE (2)
visa fler...
Högskolan i Borås (1)
visa färre...
Språk
Engelska (44)
Forskningsämne (UKÄ/SCB)
Teknik (38)
Naturvetenskap (9)
Lantbruksvetenskap (2)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy