SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1756 6649 "

Sökning: L773:1756 6649

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tilly, David, 1974-, et al. (författare)
  • Dose mapping sensitivity to deformable registration uncertainties in fractionated radiotherapy – applied to prostate proton treatments
  • 2013
  • Ingår i: BMC Medical Physics. - : Springer Science and Business Media LLC. - 1756-6649. ; 13:2
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundCalculation of accumulated dose in fractionated radiotherapy based on spatial mapping of the dose points generally requires deformable image registration (DIR). The accuracy of the accumulated dose thus depends heavily on the DIR quality. This motivates investigations of how the registration uncertainty influences dose planning objectives and treatment outcome predictions.A framework was developed where the dose mapping can be associated with a variable known uncertainty to simulate the DIR uncertainties in a clinical workflow. The framework enabled us to study the dependence of dose planning metrics, and the predicted treatment outcome, on the DIR uncertainty. The additional planning margin needed to compensate for the dose mapping uncertainties can also be determined. We applied the simulation framework to a hypofractionated proton treatment of the prostate using two different scanning beam spot sizes to also study the dose mapping sensitivity to penumbra widths.ResultsThe planning parameter most sensitive to the DIR uncertainty was found to be the targetD95. We found that the registration mean absolute error needs to be ≤0.20 cm to obtain an uncertainty better than 3% of the calculated D95 for intermediate sized penumbras. Use of larger margins in constructing PTV from CTV relaxed the registration uncertainty requirements to the cost of increased dose burdens to the surrounding organs at risk.ConclusionsThe DIR uncertainty requirements should be considered in an adaptive radiotherapy workflow since this uncertainty can have significant impact on the accumulated dose. The simulation framework enabled quantification of the accuracy requirement for DIR algorithms to provide satisfactory clinical accuracy in the accumulated dose.
  •  
2.
  • Lenora, Janaka, et al. (författare)
  • Bone turnover markers are correlated with total skeletal uptake of 99mTc-methylene diphosphonate (99mTc-MDP).
  • 2009
  • Ingår i: BMC Medical Physics. - : Springer Science and Business Media LLC. - 1756-6649. ; 9, s. 3-3
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: BACKGROUND: Skeletal uptake of 99mTc labelled methylene diphosphonate (99mTc-MDP) is used for producing images of pathological bone uptake due to its incorporation to the sites of active bone turnover. This study was done to validate bone turnover markers using total skeletal uptake (TSU) of 99mTc-MDP. METHODS: 22 postmenopausal women (52-80 years) volunteered to participate. Scintigraphy was performed by injecting 520 MBq of 99mTc-MDP and taking whole body images after 3 minutes, and 5 hours. TSU was calculated from these two images by taking into account the urinary loss and soft tissue uptake. Bone turnover markers used were bone specific alkaline phosphatase (S-Bone ALP), three different assays for serum osteocalcin (OC), tartrate resistant acid phosphatase 5b (S-TRACP5b), serum C-terminal cross-linked telopeptides of type I collagen (S-CTX-I) and three assays for urinary osteocalcin (U-OC). RESULTS: The median TSU of 99mTc-MDP was 23% of the administered activity. All bone turnover markers were significantly correlated with TSU with r-values from 0.52 (p = 0.013) to 0.90 (p < 0.001). The two resorption markers had numerically higher correlations (S-TRACP5b r = 0.90, S-CTX-I r = 0.80) than the formation markers (S-Total OC r = 0.72, S-Bone ALP r = 0.66), but the difference was not statistically significant. TSU did not correlate with age, weight, body mass index or bone mineral density. CONCLUSION: In conclusion, bone turnover markers are strongly correlated with total skeletal uptake of 99mTc-MDP. There were no significant differences in correlations for bone formation and resorption markers. This should be due to the coupling between formation and resorption.
  •  
3.
  • Axelsson, Jan, 1966-, et al. (författare)
  • The 2D Hotelling filter : a quantitativenoise-reducing principal-component filter fordynamic PET data, with applications in patientdose reduction
  • 2013
  • Ingår i: BMC Medical Physics. - : BioMed Central (BMC). - 1756-6649. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In this paper we apply the principal-component analysis filter (Hotelling filter) to reduce noise fromdynamic positron-emission tomography (PET) patient data, for a number of different radio-tracer molecules. Wefurthermore show how preprocessing images with this filter improves parametric images created from suchdynamic sequence.We use zero-mean unit variance normalization, prior to performing a Hotelling filter on the slices of a dynamictime-series. The Scree-plot technique was used to determine which principal components to be rejected in thefilter process. This filter was applied to [11C]-acetate on heart and head-neck tumors, [18F]-FDG on liver tumors andbrain, and [11C]-Raclopride on brain. Simulations of blood and tissue regions with noise properties matched to realPET data, was used to analyze how quantitation and resolution is affected by the Hotelling filter. Summing varyingparts of a 90-frame [18F]-FDG brain scan, we created 9-frame dynamic scans with image statistics comparable to 20MBq, 60 MBq and 200 MBq injected activity. Hotelling filter performed on slices (2D) and on volumes (3D) werecompared.Results: The 2D Hotelling filter reduces noise in the tissue uptake drastically, so that it becomes simple to manuallypick out regions-of-interest from noisy data. 2D Hotelling filter introduces less bias than 3D Hotelling filter in focalRaclopride uptake. Simulations show that the Hotelling filter is sensitive to typical blood peak in PET prior to tissueuptake have commenced, introducing a negative bias in early tissue uptake. Quantitation on real dynamic data isreliable. Two examples clearly show that pre-filtering the dynamic sequence with the Hotelling filter prior toPatlak-slope calculations gives clearly improved parametric image quality. We also show that a dramatic dosereduction can be achieved for Patlak slope images without changing image quality or quantitation.Conclusions: The 2D Hotelling-filtering of dynamic PET data is a computer-efficient method that gives visuallyimproved differentiation of different tissues, which we have observed improve manual or automated regionof-interest delineation of dynamic data. Parametric Patlak images on Hotelling-filtered data display improved clarity,compared to non-filtered Patlak slope images without measurable loss of quantitation, and allow a dramaticdecrease in patient injected dose.
  •  
4.
  • Eriksson, Olof, et al. (författare)
  • A computerized Infusion Pump for control of tissue tracer concentration during Positron Emission Tomography in vivo Pharmacokinetic/Pharmacodynamic measurements
  • 2008
  • Ingår i: BMC Medical Physics. - : Springer Science and Business Media LLC. - 1756-6649. ; 8:2
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND:A computer controlled infusion pump (UIPump) for regulation of target tissue concentration of radioactive compounds was developed for use in biological research and tracer development for PET.METHODS:Based on observed tissue or plasma kinetics after a bolus injection of the tracer an algorithm calculates the infusion needed to obtain a specified target kinetic curve. A computer feeds this infusion scheme into an infusion pump connected to an animal via a venous catheter. The concept was validated using [11C]Flumazenil administrated to Sprague-Dawley rats where the whole brain distribution and kinetic of the tracer was measured over time using a microPET-scanner. The accuracy and precision of the system was assessed by producing steady-state levels of the tracer and by mimicking kinetics after oral administration.RESULTS:Various kinetic profiles could be generated, including rapid achievement of constant levels, or step-wise increased levels. The resulting tissue curves had low deviation from the target curves according to the specified criteria: AUC (%): 4.2 +/- 2.8, Maximal deviation (%): 13.6 +/- 5.0 and R2: 0.95 +/- 0.02.CONCLUSION:The UIPump-system is suitable for use in PET-research for assessment of PK/PD properties by simulation of different tracer tissue kinetics in vivo.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy