SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1758 6836 OR L773:0954 0911 srt2:(2010-2014)"

Sökning: L773:1758 6836 OR L773:0954 0911 > (2010-2014)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Si, 1981 (författare)
  • Ultra-short vertically aligned carbon nanofibers transfer and application as bonding material
  • 2013
  • Ingår i: Soldering and Surface Mount Technology. - : Emerald. - 1758-6836 .- 0954-0911. ; 25:4, s. 242-250
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose - The transferred carbon nanofibers (CNFs) can be applied in flip chip package as interconnect material, as an alternative to the conventional solder and conductive adhesive (CA) materials. Design/methodology/approach - The structure of CNFs was confirmed by transmission electron microscopy (TEM). The electrical performance of the vertically aligned carbon nanofibers (VACNFs) joint was measured by four points probe method and compared to conventional lead-free solder Sn3.0Ag0.5Cu, pure indium and silver CA. A shear test was carried out in order to evaluate the mechanical performance of VACNFs joint. After the shear test, the fracture surface was analyzed by scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS). Findings - The results showed a high success rate in the transfer of VACNFs from growth chip to target chip. The Au-coated CNF can be wetted well with melted indium during the transfer and bonding process. In-Au intermetallic compound (IMC) formed on the surface of CNF. The electrical and mechanical performance of VACNFs is comparable to that of the traditional interconnect materials. The fracture surface is located at the interface between VACNFs and chips. The stacked-cone structure of CNF can be confirmed from a cross-section of the break CNF by TEM. Originality/value - Ultra-short VACNFs were grown and first successfully transferred to the target chip using a process which required little pressure, low temperature and short time.
  •  
2.
  • Luo, Xin, 1983, et al. (författare)
  • Surface oxide analysis of lead-free solder particles
  • 2013
  • Ingår i: Soldering and Surface Mount Technology. - : Emerald. - 1758-6836 .- 0954-0911. ; 25:1, s. 39-44
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose - The composition and thickness of surface oxide of solder particles is extremely important to the quality of interconnect and reliability of packaged system. The purpose of this paper is to develop an observable measurement to research the issue. Design/methodology/approach - AES (Auger electron spectroscopy), XPS (X-ray photoelectron spectroscopy), TEM (transmission electron microscopy) and STEM (scanning transmission electron microscopy) were employed to examine the oxide layer on microscale solder powders. Conventional techniques and FIB (Focus Ion Beam) were employed for the TEM sample preparation. High angle annular dark field (HAADF) pattern was applied to distinguish the oxide layer and the solder matrix by the contrast of average atomic number. The results were confirmed by AES and XPS measurement. Findings - The solder powders were exposed to air (70% relative humidity) at 150 degrees C for 0, 120 and 240 h for the accelerated growth of oxide. The surface oxide thickness was 6 nm and 50 nm measured by TEM for Oh and 120 h samples, respectively. It was found that the increase in surface oxide thickness of solder particles is proportional to the rooting of time. The elemental distribution along the oxide was quantified by line scanning using STEM and the atomic ratio of Sn to O in the oxide layer nearer to the outer, the middle, and the inner (adjacent to the solder matrix) was found to be 1:2, 2:3 and 1:1, respectively. The result was validated using XPS which gave Sn to O ratio of 1:2 at 5 nm depth of surface oxide. Originality/value - This is the first time FIB technology has been used to prepare TEM specimens for solder particles and TEM pictures shown of their surface oxide layer. Though requiring more care in sample preparation, the measurements by TEM and STEM are believed to be more direct and precise.
  •  
3.
  • Zhang, Y., et al. (författare)
  • Characterization of nano-enhanced interconnect materials for fine pitch assembly
  • 2014
  • Ingår i: Soldering and Surface Mount Technology. - : Emerald. - 1758-6836 .- 0954-0911. ; 26:1, s. 12-17
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose - Multiple fillers are adopted to study the filler influences on electrical and mechanical properties of the conductive adhesives. The performances of the developed nano-enhanced interconnect materials in printing process are also evaluated. The paper aims to discuss these issues. Design/methodology/approach - Micron-sized silver flakes are used as the basic fillers, and submicro- and nano-sized silver spheres and carbon nanotubes (CNTs) are adopted to obtain conductive adhesives with multiple fillers. Differential scanning calorimetry measurement is carried out to characterize the curing behavior of the samples with different fillers, four-probe method is used to obtain the bulk resistivity, shear test is conducted for adhesive strength, and environmental loading test is also involved. Furthermore, printing trials with different patterns have been carried out. Findings -The electrical resistivity of the adhesives with submicro-sized silver spheres does not monotonically change with the increasing sphere proportion, and there exists an optimized value for the ratio of silver flakes to spheres. Samples with relatively small amount of CNT additives show improved electrical properties, while their mechanical strengths tend to decrease. For the printing application, the adhesives with 18.3 volume% filler content behave much better than those with lower filler content of 6 percent. The presence of the nano-particles makes a slight improvement in the printing results. Research limitations/implications - More detailed printing performance and reliability test of the samples need to be carried out in the future. Originality/value - The conductive adhesives as interconnect materials exhibit some improved properties with optimized bimodal or trimodal fillers. The additive of the nano-fillers affects slightly on the printing quality of the bimodal conductive adhesives.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3
Typ av publikation
tidskriftsartikel (3)
Typ av innehåll
refereegranskat (3)
Författare/redaktör
Liu, Johan, 1960 (2)
Ye, L (2)
Zhang, Y. (1)
Lu, X. (1)
Jackson, G (1)
Ma, S. (1)
visa fler...
Yamaguchi, T (1)
Fan, J (1)
Chen, Si, 1981 (1)
Luo, Xin, 1983 (1)
Du, W (1)
Sitek, J. (1)
Koscielski, M. (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (3)
Språk
Engelska (3)
Forskningsämne (UKÄ/SCB)
Teknik (2)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy