SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1814 9324 OR L773:1814 9332 srt2:(2020-2024)"

Sökning: L773:1814 9324 OR L773:1814 9332 > (2020-2024)

  • Resultat 1-10 av 55
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alatarvas, Raisa, et al. (författare)
  • Heavy mineral assemblages of the De Long Trough and southern Lomonosov Ridge glacigenic deopsits : implication for the East Siberian Ice Sheet extent
  • 2022
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 18:8, s. 1867-1881
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic's glacial history has classically been interpreted from marine records in terms of the fluctuations of the Eurasian and North American ice sheets. However, the extent and timing of the East Siberian Ice Sheet (ESIS) have remained uncertain. A recently discovered glacially scoured cross-shelf trough extending to the edge of the continental shelf north of the De Long Islands has provided additional evidence that glacial ice existed on parts of the East Siberian Sea (ESS) during previous glacial periods MIS 6 and 4. This study concentrates on defining the heavy mineral signature of glacigenic deposits from the East Siberian continental margin which were collected during the 2014 SWERUS-C3 expedition. The cores studied are 20-GC1 from the East Siberian shelf, 23-GC1 and 24-GC1 from the De Long Trough (DLT), and 29-GC1 from the southern Lomonosov Ridge (LR). Heavy mineral assemblages were used to identify prominent parent rocks in hinterland and other sediment source areas. The parent rock areas include major eastern Siberian geological provinces such as the Omolon massif, the Chukotka fold belt, the Verkhoyansk fold belt, and possibly the Okhotsk–Chukotka volcanic belt. The primary riverine sources for the ESS sediments are the Indigirka and Kolyma rivers, the material of which was glacially eroded and re-deposited in the DLT. The higher abundances of amphiboles in the heavy mineral assemblages may indicate ESS paleovalley of the Indigirka River as a major pathway of sediments, while the Kolyma River paleovalley pathway relates to a higher share of pyroxenes and epidote. The mineralogical signature in the DLT diamicts, consisting predominantly of amphiboles and pyroxenes with a minor content of garnet and epidote, shows clear delivery from the eastern part of the ESIS. Although the physical properties of the DLT glacial diamict closely resemble a pervasive diamict unit recovered from the southern LR, their source material is slightly different. The assemblages with elevated amphibole and garnet content, along with higher titanite and ilmenite content of the southern LR ice-rafted diamict, emphasise the Verkhoyansk fold belt as a possible primary source. The presence of glacial sediments and the recovered glacial–tectonic features on the East Siberian continental shelf and slope, along with the results from this heavy mineral analysis, imply that glacial ice not only grew out of the East Siberian shelf but also from the De Long Islands, and that there was also ice rafting related sediment transportation to the southern LR from westerly sources, such as the Laptev Sea.
  •  
2.
  • Annan, James D., et al. (författare)
  • A new global surface temperature reconstruction for the Last Glacial Maximum
  • 2022
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 18:8, s. 1883-1896
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a new reconstruction of surface air temperature and sea surface temperature for the Last Glacial Maximum. The method blends model fields and sparse proxy-based point estimates through a data assimilation approach. Our reconstruction updates that of Annan and Hargreaves (2013), using the full range of general circulation model (GCM) simulations which contributed to three generations of the PMIP database, three major compilations of gridded sea surface temperature (SST) and surface air temperature (SAT) estimates from proxy data, and an improved methodology based on an ensemble Kalman filter. Our reconstruction has a global annual mean surface air temperature anomaly of −4.5 ± 0.9◦C relative to the pre-industrial climate. This is slightly colder than the previous estimate of Annan and Hargreaves (2013), with an upwards revision on the uncertainty due to different methodological assumptions. It is, however, substantially less cold than the recent reconstruction of Tierney et al. (2020). We show that the main reason for this discrepancy is in the choice of prior. We recommend the use of the multi-model ensemble of opportunity as potentially offering a credible prior, but it is important that the range of models included in the PMIP ensembles represent the main sources of uncertainty as realistically and comprehensively as practicable if they are to be used in this way.
  •  
3.
  • Baldermann, Andre, et al. (författare)
  • Palaeo-environmental evolution of Central Asia during the Cenozoic : New insights from the continental sedimentary archive of the Valley of Lakes (Mongolia)
  • 2021
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 17:5, s. 1955-1972
  • Tidskriftsartikel (refereegranskat)abstract
    • The Valley of Lakes basin (Mongolia) contains a unique continental sedimentary archive, suitable for constraining the influence of tectonics and climate change on the aridification of Central Asia in the Cenozoic. We identify the sedimentary provenance, the (post)depositional environment and the palaeo-climate based on sedimentological, petrographical, mineralogical, and (isotope) geochemical signatures recorded in authigenic and detrital silicates as well as soil carbonates in a sedimentary succession spanning from ~ 34 to 21 Ma. The depositional setting was characterized by an ephemeral braided river system draining prograding alluvial fans, with episodes of lake, playa or opensteppe sedimentation. Metamorphics from the northern adjacent Neoarchean to late Proterozoic hinterlands provided a continuous influx of silicate detritus to the basin, as indicated by K-Ar ages of detrital muscovite (~ 798-728 Ma) and discrimination function analysis. The authigenic clay fraction is dominated by illite-smectite and "hairy"illite (K-Ar ages of ~ 34-25 Ma), which formed during coupled petrogenesis and precipitation from hydrothermal fluids originating from major basalt flow events (~32-29 and ~ 29-25 Ma). Changes in hydroclimate are recorded in δ18 O and δ13 C profiles of soil carbonates and in silicate mineral weathering patterns, indicating that comparatively humid to semi-arid conditions prevailed in the late(st) Eocene, changing into arid conditions in the Oligocene and back to humid to semi-arid conditions in the early Miocene. Aridification steps are indicated at ~ 34-33, ~ 31, ~ 28 and ~ 23 Ma and coincide with some episodes of high-latitude ice-sheet expansion inferred from marine deep-sea sedimentary records. This suggests that long-term variations in the ocean-atmosphere circulation patterns due to pCO2 fall, reconfiguration of ocean gateways and ice-sheet expansion in Antarctica could have impacted the hydroclimate and weathering regime in the basin. We conclude that the aridification in Central Asia was triggered by reduced moisture influx by westerly winds driven by Cenozoic climate forcing and the exhumation of the Tian Shan and Altai Mountains and modulated by global climate events.
  •  
4.
  • Berntell, Ellen, et al. (författare)
  • Mid-Pliocene West African Monsoon rainfall as simulated in the PlioMIP2 ensemble
  • 2021
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 17:4, s. 1777-1794
  • Tidskriftsartikel (refereegranskat)abstract
    • The mid-Pliocene warm period (mPWP; ∼3.2 million years ago) is seen as the most recent time period characterized by a warm climate state, with similar to modern geography and ∼400 ppmv atmospheric CO2 concentration, and is therefore often considered an interesting analogue for near-future climate projections. Paleoenvironmental reconstructions indicate higher surface temperatures, decreasing tropical deserts, and a more humid climate in West Africa characterized by a strengthened West African Monsoon (WAM). Using model results from the second phase of the Pliocene Modelling Intercomparison Project (PlioMIP2) ensemble, we analyse changes of the WAM rainfall during the mPWP by comparing them with the control simulations for the pre-industrial period. The ensemble shows a robust increase in the summer rainfall over West Africa and the Sahara region, with an average increase of 2.5 mm/d, contrasted by a rainfall decrease over the equatorial Atlantic. An anomalous warming of the Sahara and deepening of the Saharan Heat Low, seen in >90 % of the models, leads to a strengthening of the WAM and an increased monsoonal flow into the continent. A similar warming of the Sahara is seen in future projections using both phase 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5). Though previous studies of future projections indicate a west–east drying–wetting contrast over the Sahel, PlioMIP2 simulations indicate a uniform rainfall increase in that region in warm climates characterized by increasing greenhouse gas forcing. We note that this effect will further depend on the long-term response of the vegetation to the CO2 forcing.
  •  
5.
  • Brierley, Chris M., et al. (författare)
  • Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations
  • 2020
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 16:5, s. 1847-1872
  • Tidskriftsartikel (refereegranskat)abstract
    • The mid-Holocene (6000 years ago) is a standard time period for the evaluation of the simulated response of global climate models using palaeoclimate reconstructions. The latest mid-Holocene simulations are a palaeoclimate entry card for the Palaeoclimate Model Intercomparison Project (PMIP4) component of the current phase of the Coupled Model Intercomparison Project (CMIP6) - hereafter referred to as PMIP4-CMIP6. Here we provide an initial analysis and evaluation of the results of the experiment for the mid-Holocene. We show that state-of-the-art models produce climate changes that are broadly consistent with theory and observations, including increased summer warming of the Northern Hemisphere and associated shifts in tropical rainfall. Many features of the PMIP4-CMIP6 simulations were present in the previous generation (PMIP3-CMIP5) of simulations. The PMIP4-CMIP6 ensemble for the mid-Holocene has a global mean temperature change of -0.3 K, which is -0.2K cooler than the PMIP3-CMIP5 simulations predominantly as a result of the prescription of realistic greenhouse gas concentrations in PMIP4-CMIP6. Biases in the magnitude and the sign of regional responses identified in PMIP3-CMIP5, such as the amplification of the northern African monsoon, precipitation changes over Europe, and simulated aridity in mid-Eurasia, are still present in the PMIP4-CMIP6 simulations. Despite these issues, PMIP4-CMIP6 and the mid-Holocene provide an opportunity both for quantitative evaluation and derivation of emergent constraints on the hydrological cycle, feedback strength, and potentially climate sensitivity.
  •  
6.
  • Brown, Josephine R., et al. (författare)
  • Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models
  • 2020
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 16:5, s. 1777-1805
  • Tidskriftsartikel (refereegranskat)abstract
    • El Niño–Southern Oscillation (ENSO) is the strongest mode of interannual climate variability in the current climate, influencing ecosystems, agriculture, and weather systems across the globe, but future projections of ENSO frequency and amplitude remain highly uncertain. A comparison of changes in ENSO in a range of past and future climate simulations can provide insights into the sensitivity of ENSO to changes in the mean state, including changes in the seasonality of incoming solar radiation, global average temperatures, and spatial patterns of sea surface temperatures. As a comprehensive set of coupled model simulations is now available for both palaeoclimate time slices (the Last Glacial Maximum, mid-Holocene, and last interglacial) and idealised future warming scenarios (1 % per year CO2 increase, abrupt four-time CO2 increase), this allows a detailed evaluation of ENSO changes in this wide range of climates. Such a comparison can assist in constraining uncertainty in future projections, providing insights into model agreement and the sensitivity of ENSO to a range of factors. The majority of models simulate a consistent weakening of ENSO activity in the last interglacial and mid-Holocene experiments, and there is an ensemble mean reduction of variability in the western equatorial Pacific in the Last Glacial Maximum experiments. Changes in global temperature produce a weaker precipitation response to ENSO in the cold Last Glacial Maximum experiments and an enhanced precipitation response to ENSO in the warm increased CO2 experiments. No consistent relationship between changes in ENSO amplitude and annual cycle was identified across experiments.
  •  
7.
  • Bühler, Janica C., et al. (författare)
  • Investigating stable oxygen and carbon isotopic variability in speleothem records over the last millennium using multiple isotope-enabled climate models
  • 2022
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 18:7, s. 1625-1654
  • Tidskriftsartikel (refereegranskat)abstract
    • The incorporation of water isotopologues into the hydrology of general circulation models (GCMs) facilitates the comparison between modeled and measured proxy data in paleoclimate archives. However, the variability and drivers of measured and modeled water isotopologues, as well as the diversity of their representation in different models, are not well constrained. Improving our understanding of this variability in past and present climates will help to better constrain future climate change projections and decrease their range of uncertainty. Speleothems are a precisely datable terrestrial paleoclimate archives and provide well-preserved (semi-)continuous multivariate isotope time series in the lower latitudes and mid-latitudes and are therefore well suited to assess climate and isotope variability on decadal and longer timescales. However, the relationships of speleothem oxygen and carbon isotopes to climate variables are influenced by site-specific parameters, and their comparison to GCMs is not always straightforward.Here we compare speleothem oxygen and carbon isotopic signatures from the Speleothem Isotopes Synthesis and Analysis database version 2 (SISALv2) to the output of five different water-isotope-enabled GCMs (ECHAM5-wiso, GISS-E2-R, iCESM, iHadCM3, and isoGSM) over the last millennium (850–1850 CE). We systematically evaluate differences and commonalities between the standardized model simulation outputs. The goal is to distinguish climatic drivers of variability for modeled isotopes and compare them to those of measured isotopes.We find strong regional differences in the oxygen isotope signatures between models that can partly be attributed to differences in modeled surface temperature. At low latitudes, precipitation amount is the dominant driver for stable water isotope variability; however, at cave locations the agreement between modeled temperature variability is higher than for precipitation variability. While modeled isotopic signatures at cave locations exhibited extreme events coinciding with changes in volcanic and solar forcing, such fingerprints are not apparent in the speleothem isotopes. This may be attributed to the lower temporal resolution of speleothem records compared to the events that are to be detected. Using spectral analysis, we can show that all models underestimate decadal and longer variability compared to speleothems (albeit to varying extents).We found that no model excels in all analyzed comparisons, although some perform better than the others in either mean or variability. Therefore, we advise a multi-model approach whenever comparing proxy data to modeled data. Considering karst and cave internal processes, e.g., through isotope-enabled karst models, may alter the variability in speleothem isotopes and play an important role in determining the most appropriate model. By exploring new ways of analyzing the relationship between the oxygen and carbon isotopes, their variability, and co-variability across timescales, we provide methods that may serve as a baseline for future studies with different models using, e.g., different isotopes, different climate archives, or different time periods.
  •  
8.
  • Charpentier Ljungqvist, Fredrik, 1982-, et al. (författare)
  • Climatic signatures in early modern European grain harvest yields
  • 2023
  • Ingår i: Climate of the Past. - 1814-9324 .- 1814-9332. ; 19:12, s. 2463-2491
  • Tidskriftsartikel (refereegranskat)abstract
    • The association between climate variability and grain harvest yields has been an important component of food security and economy in European history. Yet, inter-regional comparisons of climate–yield relationships have been hampered by locally varying data types and the use of different statistical methods. Using a coherent statistical framework, considering the effects of diverse serial correlations on statistical significance, we assess the temperature and hydroclimate (precipitation and drought) signatures in grain harvest yields across varying environmental settings of early modern (ca. 1500–1800) Europe. An unprecedentedly large network of yield records from northern (Sweden), central (Switzerland), and southern (Spain) Europe are compared with a diverse set of seasonally and annually resolved palaeoclimate reconstructions. Considering the effects of different crop types and time series frequencies, we find within regions consistent climate–harvest yield associations characterized by a significant summer soil moisture signal in Sweden, winter temperature and precipitation signals in Switzerland, and spring and annual mean temperature signals in Spain. The regional-scale climate–harvest associations are weaker than the recently revealed climate signals in early modern grain prices but similar in strength to modern climate–harvest relationships at comparable spatial scales. This is a noteworthy finding considering the uncertainties inherent in both historical harvest and palaeoclimate data.
  •  
9.
  • Dallmeyer, Anne, et al. (författare)
  • The challenge of comparing pollen-based quantitative vegetation reconstructions with outputs from vegetation models - a European perspective
  • 2023
  • Ingår i: Climate of the Past. - : Copernicus Publications. - 1814-9324 .- 1814-9332. ; 19:7, s. 1531-1557
  • Tidskriftsartikel (refereegranskat)abstract
    • We compare Holocene tree cover changes in Europe derived from a transient Earth system model simulation (Max Planck Institute Earth System Model - MPI-ESM1.2, including the land surface and dynamic vegetation model JSBACH) with high-spatial-resolution time slice simulations performed in the dynamic vegetation model LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator) and pollen-based quantitative reconstructions of tree cover based on the REVEALS (Regional Estimates of Vegetation Abundance from Large Sites) model. The dynamic vegetation models and REVEALS agree with respect to the general temporal trends in tree cover for most parts of Europe, with a large tree cover during the mid-Holocene and a substantially smaller tree cover closer to the present time. However, the decrease in tree cover in REVEALS starts much earlier than in the models, indicating much earlier anthropogenic deforestation than the prescribed land use in the models. While LPJ-GUESS generally overestimates tree cover compared to the reconstructions, MPI-ESM indicates lower percentages of tree cover than REVEALS, particularly in central Europe and the British Isles. A comparison of the simulated climate with chironomid-based climate reconstructions reveals that model-data mismatches in tree cover are in most cases not driven by biases in the climate. Instead, sensitivity experiments indicate that the model results strongly depend on the tuning of the models regarding natural disturbance regimes (e.g. fire and wind throw). The frequency and strength of disturbances are - like most of the parameters in the vegetation models - static and calibrated to modern conditions. However, these parameter values may not be valid for past climate and vegetation states totally different from today's. In particular, the mid-Holocene natural forests were probably more stable and less sensitive to disturbances than present-day forests that are heavily altered by human interventions. Our analysis highlights the fact that such model settings are inappropriate for paleo-simulations and complicate model-data comparisons with additional challenges. Moreover, our study suggests that land use is the main driver of forest decline in Europe during the mid-Holocene and late Holocene.
  •  
10.
  • de Nooijer, Wesley, et al. (författare)
  • Evaluation of Arctic warming in mid-Pliocene climate simulations
  • 2020
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 16:6, s. 2325-2341
  • Tidskriftsartikel (refereegranskat)abstract
    • Palaeoclimate simulations improve our understanding of the climate, inform us about the performance of climate models in a different climate scenario, and help to identify robust features of the climate system. Here, we analyse Arctic warming in an ensemble of 16 simulations of the mid-Pliocene Warm Period (mPWP), derived from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2). The PlioMIP2 ensemble simulates Arctic (60-90 degrees N) annual mean surface air temperature (SAT) increases of 3.7 to 11.6 degrees C compared to the pre-industrial period, with a multimodel mean (MMM) increase of 7.2 degrees C. The Arctic warming amplification ratio relative to global SAT anomalies in the ensemble ranges from 1.8 to 3.1 (MMM is 2.3). Sea ice extent anomalies range from -3.0 to -10.4 x 10(6) km(2), with a MMM anomaly of -5.6 x 10 6 km(2), which constitutes a decrease of 53 % compared to the pre-industrial period. The majority (11 out of 16) of models simulate summer seaice-free conditions (<= 1 x 10(6) km(2)) in their mPWP simulation. The ensemble tends to underestimate SAT in the Arctic when compared to available reconstructions, although the degree of underestimation varies strongly between the simulations. The simulations with the highest Arctic SAT anomalies tend to match the proxy dataset in its current form better. The ensemble shows some agreement with reconstructions of sea ice, particularly with regard to seasonal sea ice. Large uncertainties limit the confidence that can be placed in the findings and the compatibility of the different proxy datasets. We show that while reducing uncertainties in the reconstructions could decrease the SAT data-model discord substantially, further improvements are likely to be found in enhanced boundary conditions or model physics. Lastly, we compare the Arctic warming in the mPWP to projections of future Arctic warming and find that the PlioMIP2 ensemble simulates greater Arctic amplification than CMIP5 future climate simulations and an increase instead of a decrease in Atlantic Meridional Overturning Circulation (AMOC) strength compared to pre-industrial period. The results highlight the importance of slow feedbacks in equilibrium climate simulations, and that caution must be taken when using simulations of the mPWP as an analogue for future climate change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 55
Typ av publikation
tidskriftsartikel (54)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (55)
Författare/redaktör
Lohmann, Gerrit (16)
Zhang, Zhongshi (15)
Zhang, Qiong (14)
Guo, Chuncheng (12)
Abe-Ouchi, Ayako (12)
Lunt, Daniel J. (11)
visa fler...
Otto-Bliesner, Bette ... (11)
Chandan, Deepak (10)
Nisancioglu, Kerim H ... (9)
Stepanek, Christian (9)
Peltier, W. Richard (9)
Muscheler, Raimund (8)
Li, Xiangyu (8)
Li, Qiang (8)
Haywood, Alan M. (8)
Tindall, Julia C. (8)
Sohl, Linda E. (8)
Chandler, Mark A. (8)
Tan, Ning (8)
Baatsen, Michiel L. ... (8)
Chan, Wing-Le (8)
Williams, Charles J. ... (8)
Feng, Ran (8)
Brady, Esther C. (8)
Ramstein, Gilles (7)
von der Heydt, Anna ... (7)
de Boer, Agatha M. (6)
Adolphi, Florian (6)
Hunter, Stephen J. (6)
Contoux, Camille (6)
Shi, Xiaoxu (6)
Kamae, Youichi (5)
Brierley, Chris M. (5)
Braconnot, Pascale (5)
Zheng, Weipeng (5)
Sjolte, Jesper (4)
Coxall, Helen K. (4)
Zhao, Anni (4)
Kageyama, Masa (4)
Volodin, Evgeny M. (4)
Svensson, Anders (3)
Erhardt, Tobias (3)
Werner, Martin (3)
Mauritsen, Thorsten (3)
Ladant, Jean-Baptist ... (3)
Lear, Caroline H. (3)
Christl, Marcus (3)
Ohgaito, Rumi (3)
D'Agostino, Roberta (3)
Otto-Bliesner, Bette (3)
visa färre...
Lärosäte
Stockholms universitet (36)
Lunds universitet (17)
Uppsala universitet (5)
Göteborgs universitet (3)
Linnéuniversitetet (2)
Naturhistoriska riksmuseet (2)
visa fler...
Sveriges Lantbruksuniversitet (2)
Umeå universitet (1)
Linköpings universitet (1)
visa färre...
Språk
Engelska (55)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (54)
Lantbruksvetenskap (3)
Humaniora (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy