SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1872 8057 OR L773:0303 7207 srt2:(2020-2024)"

Sökning: L773:1872 8057 OR L773:0303 7207 > (2020-2024)

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Breves, J. P., et al. (författare)
  • Cortisol regulates insulin-like growth-factor binding protein (igfbp) gene expression in Atlantic salmon parr
  • 2020
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207 .- 1872-8057. ; 518
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2020 Elsevier B.V. The growth hormone (Gh)/insulin-like growth-factor (Igf)/Igf binding protein (Igfbp) system regulates growth and osmoregulation in salmonid fishes, but how this system interacts with other endocrine systems is largely unknown. Given the well-documented consequences of mounting a glucocorticoid stress response on growth, we hypothesized that cortisol inhibits anabolic processes by modulating the expression of hepatic igfbp mRNAs. Atlantic salmon (Salmo salar) parr were implanted intraperitoneally with cortisol implants (0, 10, and 40 μg g−1 body weight) and sampled after 3 or 14 days. Cortisol elicited a dose-dependent reduction in specific growth rate (SGR) after 14 days. While plasma Gh and Igf1 levels were unchanged, hepatic igf1 mRNA was diminished and hepatic igfbp1b1 and -1b2 were stimulated by the high cortisol dose. Plasma Igf1 was positively correlated with SGR at 14 days. Hepatic gh receptor (ghr), igfbp1a, -2a, -2b1, and -2b2 levels were not impacted by cortisol. Muscle igf2, but not igf1 or ghr, levels were stimulated at 3 days by the high cortisol dose. As both cortisol and the Gh/Igf axis promote seawater (SW) tolerance, and particular igfbps respond to SW exposure, we also assessed whether cortisol coordinates the expression of branchial igfbps and genes associated with ion transport. Cortisol stimulated branchial igfbp5b2 levels in parallel with Na+/K+-ATPase (NKA) activity and nka-α1b, Na+/K+/2Cl--cotransporter 1 (nkcc1), and cystic fibrosis transmembrane regulator 1 (cftr1) mRNA levels. The collective results indicate that cortisol modulates the growth of juvenile salmon via the regulation of hepatic igfbp1s whereas no clear links between cortisol and branchial igfbps previously shown to be salinity-responsive could be established.
  •  
2.
  • Chriett, S., et al. (författare)
  • SCRT1 is a novel beta cell transcription factor with insulin regulatory properties
  • 2021
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207 .- 1872-8057. ; 521
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we show that scratch family transcriptional repressor 1 (SCRT1), a zinc finger transcriptional regulator, is a novel regulator of beta cell function. SCRT1 was found to be expressed in beta cells in rodent and human islets. In human islets, expression of SCRT1 correlated with insulin secretion capacity and the expression of the insulin (INS) gene. Furthermore, SCRT1 mRNA expression was lower in beta cells from T2D patients. siRNA-mediated Scrt1 silencing in INS-1832/13 cells, mouse- and human islets resulted in impaired glucose-stimulated insulin secretion and decreased expression of the insulin gene. This is most likely due to binding of SCRT1 to E-boxes of the Ins1 gene as shown with ChIP. Scrt1 silencing also reduced the expression of several key beta cell transcription factors. Moreover, Scrt1 mRNA expression was reduced by glucose and SCRT1 protein was found to translocate between the nucleus and the cytosol in a glucose-dependent fashion in INS-1832/13 cells as well as in a rodent model of T2D. SCRT1 was also regulated by a GSK3β-dependent SCRT1-serine phosphorylation. Taken together, SCRT1 is a novel beta cell transcription factor that regulates insulin secretion and is affected in T2D.
  •  
3.
  •  
4.
  •  
5.
  • Huang, Junchi, et al. (författare)
  • The roles of RUNX2 and osteoclasts in regulating expression of steroidogenic enzymes in castration-resistant prostate cancer cells
  • 2021
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207 .- 1872-8057. ; 535
  • Tidskriftsartikel (refereegranskat)abstract
    • Intratumoral steroidogenesis is involved in development of castration-resistant prostate cancer (CRPC) as bone metastases. The osteoblast transcription factor RUNX2 influences steroidogenesis and is induced in CRPC cells by osteoblasts. This study investigates osteoclastic influence on RUNX2 in intratumoral steroidogenesis. Steroidogenic enzymes and steroid receptors were detected with immunohistochemistry in xenograft intratibial tumors from CRPC cells. In vitro, expression of RUNX2 was increased by osteoclasts in osteoblastic LNCaP-19 cells, but not in osteolytic PC-3. Silencing of RUNX2 downregulates expression of CYP11A1, CYP17A1 and HSD3B1 in LNCaP-19 cells co-cultured with osteoclasts, leading to inhibition of KLK3 expression. Osteoclasts promoted CYP11A1 and RUNX2 promoted AKR1C3, HSD17B3 and CYP19A1, but suppressed ESR2 in PC-3 cells. This study shows that osteoclasts promote RUNX2 regulated induction of key steroidogenic enzymes, influencing activation of androgen receptor in CRPC cells. The potential of RUNX2 as a target to inhibit progression of skeletal metastases of CRPC needs further investigation.
  •  
6.
  • Irachi, Shotaro, et al. (författare)
  • Photoperiodic regulation of pituitary thyroid-stimulating hormone and brain deiodinase in Atlantic salmon
  • 2021
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207 .- 1872-8057. ; 519
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2020 Seasonal timing is important for many critical life history events of vertebrates, and photoperiod is often used as a reliable seasonal cue. In mammals and birds, it has been established that a photoperiod-driven seasonal clock resides in the brain and pituitary, and is driven by increased levels of pituitary thyroid stimulating hormone (TSH) and brain type 2 iodothyronine deiodinase (DIO2), which leads to local increases in triiodothyronine (T3). In order to determine if a similar mechanism occurs in fish, we conducted photoperiod manipulations in anadromous (migratory) Atlantic salmon (Salmo salar) that use photoperiod to time the preparatory development of salinity tolerance which accompanies downstream migration in spring. Changing daylength from short days (light:dark (LD) 10:14) to long days (LD 16:8) for 20 days increased gill Na+/K+-ATPase (NKA) activity, gill NKAα1b abundance and plasma growth hormone (GH) levels that normally accompany increased salinity tolerance of salmon in spring. Long-day exposure resulted in five-fold increases in pituitary tshβb mRNA levels after 10 days and were sustained for at least 20 days. tshβb mRNA levels in the saccus vasculosus were low and not influenced by photoperiod. Increased daylength resulted in significant increases in dio2b mRNA levels in the hypothalamus and midbrain/optic tectum regions of the brain. The results are consistent with the presence of a photoperiod-driven seasonal clock in fish which involves pituitary TSH, brain DIO2 and the subsequent production of T3, supporting the hypothesis that this is a common feature of photoperiodic regulation of seasonality in vertebrates.
  •  
7.
  •  
8.
  • Keuper, Michaela, et al. (författare)
  • The good and the BAT of metabolic sex differences in thermogenic human adipose tissue
  • 2021
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207 .- 1872-8057. ; 533
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermogenic adipose tissue, which comprises classical brown and beige adipose tissue, has the ability to improve systemic metabolism. Its identification in adult humans has fostered extensive investigations on the therapeutic value to counteract obesity and metabolic disorders. Sex and gender differences of human thermogenic adipose tissue, however, are still understudied despite their importance for personalized treatment options. Here, we review studies reporting human sex differences of thermogenic adipose tissue and related potential improvements of systemic energy metabolism. An increasing body of evidence suggests higher prevalence, mass and activity of thermogenic adipose tissue in women, but the consequences for metabolic disease progression and mechanisms are largely unknown. Therefore, we also discuss observations on sex-specific adipose metabolism in experimental mouse and rat studies that may assist to establish molecular mechanisms and instruct future investigations in humans.
  •  
9.
  • Lindqvist, A, et al. (författare)
  • Ghrelin suppresses insulin secretion in human islets and type 2 diabetes patients have diminished islet ghrelin cell number and lower plasma ghrelin levels
  • 2020
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207 .- 1872-8057. ; 511
  • Tidskriftsartikel (refereegranskat)abstract
    • It is not known how ghrelin affects insulin secretion in human islets from patients with type 2 diabetes (T2D) or whether islet ghrelin expression or circulating ghrelin levels are altered in T2D. Here we sought out to identify the effect of ghrelin on insulin secretion in human islets and the impact of T2D on circulating ghrelin levels and on islet ghrelin cells. The effect of ghrelin on insulin secretion was assessed in human T2D and non-T2D islets. Ghrelin expression was assessed with RNA-sequencing (n = 191) and immunohistochemistry (n = 21). Plasma ghrelin was measured with ELISA in 40 T2D and 40 non-T2D subjects. Ghrelin exerted a glucose-dependent insulin-suppressing effect in islets from both T2D and non-T2D donors. Compared with non-T2D donors, T2D donors had reduced ghrelin mRNA expression and 75% less islet ghrelin cells, and ghrelin mRNA expression correlated negatively with HbA1c. T2D subjects had 25% lower fasting plasma ghrelin levels than matched controls. Thus, ghrelin has direct insulin-suppressing effects in human islets and T2D patients have lower fasting ghrelin levels, likely as a result of reduced number of islet ghrelin cells. These findings support inhibition of ghrelin signaling as a potential therapeutic avenue for stimulation of insulin secretion in T2D patients.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy