SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1873 2968 OR L773:0006 2952 srt2:(2015-2019)"

Sökning: L773:1873 2968 OR L773:0006 2952 > (2015-2019)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Burkina, Viktoriia, et al. (författare)
  • In vitro effects of the citrus flavonoids diosmin, naringenin and naringin on the hepatic drug-metabolizing CYP3A enzyme in human, pig, mouse and fish
  • 2016
  • Ingår i: Biochemical Pharmacology. - : Elsevier BV. - 0006-2952 .- 1873-2968. ; 110-111, s. 109-116
  • Tidskriftsartikel (refereegranskat)abstract
    • Flavonoids are known to have effects on cytochrome P450 enzymatic activity. However, little effort has been made to examine species differences and the relevance of studies on mammalian and fish microsomes so that extrapolations can be made to humans. Therefore, the effects of several naturally occurring flavonoids on the activity of CYP3A-dependent 7-benzyloxy-4-trifluoromethylcoumarin O-debenzylase (BFCOD) were evaluated in human, pig, mouse, and juvenile rainbow trout sources of hepatic microsomes. Each was exposed to three concentrations (1, 10, and 100 mu M) of diosmin, naringin, and naringenin. Naringenin competitively inhibited BFCOD activity (K-i values were 24.6 mu M in human, 15.6 mu M in pig, and 19.6 mu M in mouse microsomes). In fish, BFCOD activity was inhibited in a noncompetitive manner (K-i = 7 mu M). Neither diosmin nor naringenin affected BFCOD activity in hepatic microsomes from the studied model organisms. These results suggest that dietary flavonoids potentially inhibit the metabolism of clinical drugs. (C) 2016 Elsevier Inc. All rights reserved.
  •  
2.
  • Dahlgren, Claes, 1949, et al. (författare)
  • Basic characteristics of the neutrophil receptors that recognize formylated peptides, a danger-associated molecular pattern generated by bacteria and mitochondria.
  • 2016
  • Ingår i: Biochemical pharmacology. - : Elsevier BV. - 1873-2968 .- 0006-2952. ; 114, s. 22-39
  • Forskningsöversikt (refereegranskat)abstract
    • Proper recruitment and activation of neutrophils to/at sites of infection/inflammation relies largely on the surface expression of chemoattractant receptors of which a formyl peptide receptor (FPR1) was the first to be cloned and characterized in more detail. This receptor displays high affinity for bacterial- or mitochondrial-derived peptides that contain a formylated methionine in the N-terminus. The neutrophil chemoattractant receptors belong to the group of 7-transmembrane domain receptors that signal through activation of heterotrimeric G proteins. These receptors have been shown to be important in host defense against microbial intruders and in regulating inflammatory reactions. The two FPRs (FPR1, FPR2) expressed in neutrophils share significant sequence homology and bind many structurally diverse activating (agonistic) and inhibiting (antagonistic) ligands, ranging from peptides to lipopeptides containing peptide sequences derived from intracellular regions of the FPRs. Recent structural and functional studies of the two neutrophil FPRs have generated important information for our understanding of general pharmacological principles, governing regulation of neutrophil function and inflammation and increased knowledge of more general G-protein coupled receptor features, such as ligand recognition, biased signaling, allosteric modulation, and a unique receptor cross-talk phenomenon. This article aims to summarize recent discoveries and pharmacological characterization of neutrophil FPRs and to discuss unmet challenges, including recognition by the receptors of diverse ligands and how biased signals mediate different biological effects.
  •  
3.
  • Gabl, Michael, et al. (författare)
  • FPR2 signaling without β-arrestin recruitment alters the functional repertoire of neutrophils.
  • 2017
  • Ingår i: Biochemical pharmacology. - : Elsevier BV. - 1873-2968 .- 0006-2952.
  • Tidskriftsartikel (refereegranskat)abstract
    • G-protein coupled receptor (GPCR) biased agonism or functional selectivity has become an essential concept in GPCR research over the last years. Receptor-specific biased agonists selectively trigger one signaling pathway over another and induce a restricted/directed functional response. In this study, we aimed to characterize the concept of biased agonism for FPR2, a member of the formyl peptide receptor (FPR) subfamily of GPCRs. We show that the earlier described FPR2-activating pepducin F2Pal10 is a biased FPR2 agonist. The effects of F2Pal10 on neutrophil function differed in several aspects compared to those mediated by WKYMVM, a conventional FPR2-specific peptide agonist. Upon interaction with FPR2 expressed by neutrophils both F2Pal10 and WKYMVM activated the PLC-PIP2-Ca(2+) signaling pathway and the superoxide-generating NADPH-oxidase, but only WKYMVM activated the receptor to recruit β-arrestin. The functional consequences linked to a lack of β-arrestin recruitment were further explored, and we demonstrate that FPR2 desensitization occurred independent of β-arrestin. Despite this, reactivation of desensitized receptors achieved through a disruption of the cytoskeleton and through a novel FPR2 cross-talk mechanism with P2Y2R (the ATP receptor) and PAFR (the receptor for PAF) differed between F2Pal10-desensitized and WKYMVM-desensitized neutrophils. Further, the inability to recruit β-arrestin was found to be associated with a reduced rate of receptor internalization and impaired chemotaxis in neutrophils. In summary, we provide experimental evidence of biased agonism for FPR2 and our data disclose critical roles of β-arrestin in neutrophil chemotaxis and reactivation of desensitized receptors.
  •  
4.
  •  
5.
  • Lind, Simon, 1993, et al. (författare)
  • Functional and signaling characterization of the neutrophil FPR2 selective agonist Act-389949
  • 2019
  • Ingår i: Biochemical Pharmacology. - : Elsevier BV. - 0006-2952 .- 1356-1839 .- 1873-2968. ; 166, s. 163-173
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the steadily increased numbers of formyl peptide receptor (FPR) ligands identified over the years, few have been characterized in studies using animal disease models and even less have entered clinical trials in human subjects. A small-molecule compound, Act-389949, was however recently tested in a phase I clinical trial and found to be safe and well tolerated in healthy human subjects. The desired anti-inflammatory property of Act-389949 was proposed to be mediated through FPR2, one of the FPRs expressed in neutrophils, but no basic characterization was included in the study. To gain more insights into FPR2 recognition of this first-in-class compound for future utility of the agonist, we have in this study determined the receptor preference and downstream signaling characteristics induced by Act-389949 in human blood neutrophils isolated from healthy donors. Our data demonstrate that Act-389949 is an agonist for FPR2 that triggers functional/signaling repertoires comparable to what has been earlier described for other FPR2 agonists, including neutrophil chemotaxis, granule mobilization and activation of the NADPH-oxidase. In fact, Act-389949 was found to be as potent as the prototype FPR2 peptide agonist WKYMVM and had the advantage of being resistant to oxidation by MPO-H2O2 halide derived oxidants, as compared to the sensitive WKYMVM. The down-stream signals generated by Act-389949 include an FPR2-dependent and Gaq-independent transient rise in intracellular Ca2+ and recruitment of beta-arrestin. In summary, our data show that Act-389949 serves as an excellent tool-compound for further dissection of FPR2-regulated activities in vitro and in vivo. Potent and stable FPR ligands such as Act-389949 may therefore be used to develop the next generation of FPR signaling regulating anti-inflammatory therapeutics.
  •  
6.
  •  
7.
  •  
8.
  • Semaan, Walid, et al. (författare)
  • Chymase inhibitor-sensitive synthesis of endothelin-1 (1-31) by recombinant mouse mast cell protease 4 and human chymase
  • 2015
  • Ingår i: Biochemical Pharmacology. - : Elsevier BV. - 0006-2952 .- 1356-1839 .- 1873-2968. ; 94:2, s. 91-100
  • Tidskriftsartikel (refereegranskat)abstract
    • Important structural differences imply that human and mouse mast cell chymases may differ with respect to their enzymatic properties. We compared in this study the catalytic efficiencies of recombinant human chymase (rCMA1) and its functional murine homologue recombinant mouse mast cell protease-4 (rmMCP-4) toward a fluorogenic chymase substrate (Suc-Ala-Ala-Pro-Phe-7-amino-4-methylcoumarin (AMC) and by their ability to convert Big-endothelin (ET)-1 into ET-1 (1-31) using a LC/MS/MS system. Activities toward a fluorogenic substrate (Suc-Leu-Leu-Val-Tyr-AMC) and Big ET-1 were also measured in extracts from mouse peritoneal mast cells, LUVA human mast cell-like cells and human aortas. The specificity of these activities was assessed with the chymase inhibitor TY-51469 (2-[4-(5-fluoro-3-methylbenzo[b]thiophen-2-yl)sulfonamido-3-methanesulfonyl-phenyl]thiazole-4-carboxylic acid). For similar affinities, rmMCP-4 showed a higher activity toward the fluorogenic substrate and a higher ability to process Big ET-1 as compared to recombinant CMA1 (chymase activity (k(cat)/K-M in mu M-1 s(-1)): 2.29 x 10(-4) vs. 6.41 x 10(-6); ET-1 (1-31) production: 2.19 x 10(-3) vs. 6.57 x 10(-5)), and both of these activities of mouse and human chymase were sensitive to TY-51469. Furthermore, extracts from mouse peritoneal mast cells, LUVA cells and human aorta homogenates contained processing activities toward the fluorogenic chymase substrate as well as Big ET-1, all of which were sensitive to TY-51469. Finally, the pressor responses to Big ET-1 but not to ET-1 were significantly reduced in conscious and free moving mMCP-4 KO mice when compared to wild type congeners. Our results suggest that both mouse and human chymases have potent ET-1 (1-31)-producing abilities, with the murine isoform being more efficient.
  •  
9.
  • Skovbakke, Sarah Line, et al. (författare)
  • The peptidomimetic Lau-(Lys-βNSpe)6-NH2 antagonizes formyl peptide receptor 2 expressed in mouse neutrophils.
  • 2016
  • Ingår i: Biochemical pharmacology. - : Elsevier BV. - 1873-2968 .- 0006-2952. ; 119, s. 56-65
  • Tidskriftsartikel (refereegranskat)abstract
    • The formyl peptide receptor (FPR) gene family has a complex evolutionary history and comprises eight murine members but only three human representatives. To enable translation of results obtained in mouse models of human diseases, more comprehensive knowledge of the pharmacological similarities/differences between the human and murine FPR family members is required. Compared to FPR1 and FPR2 expressed by human neutrophils, very little is known about agonist/antagonist recognition patterns for their murine orthologues, but now we have identified two potent and selective formylated peptide agonists (fMIFL and PSMα2) for Fpr1 and Fpr2, respectively. These peptides were used to determine the inhibition profile of a set of antagonists with known specificities for the two FPRs in relation to the corresponding murine receptors. Some of the most potent and selective antagonists for the human receptors proved to be devoid of effect on their murine orthologues as determined by their inability to inhibit superoxide release from murine neutrophils upon stimulation with receptor-specific agonists. The Boc-FLFLF peptide was found to be a selective antagonist for Fpr1, whereas the lipidated peptidomimetic Lau-(Lys-βNSpe)6-NH2 and the hexapeptide WRW4 were identified as Fpr2-selective antagonists.
  •  
10.
  • Skovbakke, Sarah Line, et al. (författare)
  • The proteolytically stable peptidomimetic Pam-(Lys-βNSpe)6-NH2 selectively inhibits human neutrophil activation via formyl peptide receptor 2.
  • 2015
  • Ingår i: Biochemical pharmacology. - : Elsevier BV. - 1873-2968 .- 0006-2952. ; 93:2, s. 182-195
  • Tidskriftsartikel (refereegranskat)abstract
    • Immunomodulatory host defense peptides (HDPs) are considered to be lead compounds for novel anti-sepsis and anti-inflammatory agents. However, development of drugs based on HDPs has been hampered by problems with toxicity and low bioavailability due to in vivo proteolysis. Here, a subclass of proteolytically stable HDP mimics consisting of lipidated α-peptide/β-peptoid oligomers was investigated for their effect on neutrophil function. The most promising compound, Pam-(Lys-βNSpe)6-NH2, was shown to inhibit formyl peptide receptor 2 (FPR2) agonist-induced neutrophil granule mobilization and release of reactive oxygen species. The potency of Pam-(Lys-βNSpe)6-NH2 was comparable to that of PBP10, the most potent FPR2-selective inhibitor known. The immunomodulatory effects of structural analogs of Pam-(Lys-βNSpe)6-NH2 emphasized the importance of both the lipid and peptidomimetic parts. By using imaging flow cytometry in primary neutrophils and FPR-transfected cell lines, we found that a fluorescently labeled analog of Pam-(Lys-βNSpe)6-NH2 interacted selectively with FPR2. Furthermore, the interaction between Pam-(Lys-βNSpe)6-NH2 and FPR2 was found to prevent binding of the FPR2-specific activating peptide agonist Cy5-WKYMWM, while the binding of an FPR1-selective agonist was not inhibited. To our knowledge, Pam-(Lys-βNSpe)6-NH2 is the first HDP mimic found to inhibit activation of human neutrophils via direct interaction with FPR2. Hence, we consider Pam-(Lys-βNSpe)6-NH2 to be a convenient tool in the further dissection of the role of FPR2 in inflammation and homeostasis as well as for investigation of the importance of neutrophil stimulation in anti-infective therapy involving HDPs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy