SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1939 1234 OR L773:1939 1242 srt2:(2010-2014)"

Sökning: L773:1939 1234 OR L773:1939 1242 > (2010-2014)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aronsson, Pär, et al. (författare)
  • Impact of nitrogen fertilization to short-rotation willow coppice plantations grown in Sweden on yield and economy
  • 2014
  • Ingår i: BioEnergy Research. - : Springer Science and Business Media LLC. - 1939-1234 .- 1939-1242. ; 7, s. 993-1001
  • Tidskriftsartikel (refereegranskat)abstract
    • A fertilization trial was carried out in established short-rotation willow coppice (SRWC) plantations of two bred varieties of willow (Salix spp.; "Tora" and "Jorr") at five sites in central Sweden between 2008 and 2010. Mineral nitrogen was applied at four different rates: No fertilization (Control), 160 kg nitrogen ha(-1) as a single dose after harvest (Economy), 60-100-60 kg nitrogen ha(-1) in year 1-2-3 (Normal), and 160 kg nitrogen ha(-1) year(-1) in years 1-3 (Intensive), using a randomized block design with four replicates. The yield response (biomass increase per kg fertilizer nitrogen) was 65, 67 and 46 kg kg(-1) in the Economy, Normal and Intensive treatments, respectively. The results from the fertilization trial were used for economic calculations of different fertilization strategies given varying costs for fertilization and marginal value of the increased yield (price received for wood chips minus the costs for harvest and transportation of wood chips to a district heating plant). Comparative calculations were made based on data from a previous fertilization trial during the first cutting cycle of old, non-bred varieties. The calculations showed positive net present values of fertilizing bred willow varieties given a realistic fertilization response and a price for wood chips close to the market price for forestry-based wood chips in Sweden.
  •  
2.
  •  
3.
  •  
4.
  • Englund, Oskar, 1982, et al. (författare)
  • Meeting Sustainability Requirements for SRC Bioenergy: Usefulness of Existing Tools, Responsibilities of Involved Stakeholders, and Recommendations for Further Developments
  • 2012
  • Ingår i: Bioenergy Research. - : Springer Science and Business Media LLC. - 1939-1234 .- 1939-1242. ; 5:3, s. 606-620
  • Tidskriftsartikel (refereegranskat)abstract
    • Short rotation coppice (SRC) is considered an important biomass supply option for meeting the European renewable energy targets. This paper presents an overview of existing and prospective sustainability requirements, Member State reporting obligations and parts of the methodology for calculating GHG emissions savings within the EU Renewable Energy Directive (RED), and shows how these RED-associated sustainability criteria may affect different stakeholders along SRC bioenergy supply chains. Existing and prospective tools are assessed on their usefulness in ensuring that SRC bioenergy is produced with sufficient consideration given to the RED-associated criteria. A sustainability framework is outlined that aims at (1) facilitating the development of SRC production systems that are attractive from the perspectives of all stakeholders, and (2) ensuring that the SRC production is RED eligible. Producer manuals, EIAs, and voluntary certification schemes can all be useful for ensuring RED eligibility. However, they are currently not sufficiently comprehensive, neither individually nor combined, and suggestions for how they can be more complementary are given. Geographical information systems offer opportunities for administrative authorities to provide stakeholders with maps or databases over areas/fields suitable for RED-eligible SRC cultivation. However, proper consideration of all relevant aspects requires that all stakeholders in the SRC supply chain become engaged in the development of SRC production systems and that a landscape perspective is used.
  •  
5.
  • Hammar, Torun, et al. (författare)
  • Climate Impact of Willow Grown for Bioenergy in Sweden
  • 2014
  • Ingår i: Bioenergy Research. - : Springer-Verlag New York. - 1939-1234 .- 1939-1242. ; 7:4, s. 1529-1540
  • Tidskriftsartikel (refereegranskat)abstract
    • Short-rotation coppice willow (SRCW) is a fast-growing and potentially high-yielding energy crop. Transition to bioenergy has been identified in Sweden as one strategy to mitigate climate change and decrease the current dependency on fossil fuel. In this study, life cycle assessment was used to evaluate and compare the climate impacts of SRCW systems, for the purpose of evaluating key factors influencing the climate change mitigation potential of SRCW grown on agricultural land in Sweden. Seven different scenarios were defined and analysed to identify the factors with the most influence on the climate. A carbon balance model was used to model carbon fluxes between soil, biomass and atmosphere under Swedish growing conditions. The results indicated that SRCW can act as a temporary carbon sink and therefore has a mitigating effect on climate change. The most important factor in obtaining a high climate change-mitigating effect was shown to be high yield. Low yield gave the worst mitigating effect of the seven scenarios, but it was still better than the effect of the reference systems, district heating produced from coal or natural gas.
  •  
6.
  • Kudahettige, Rasika L., et al. (författare)
  • Characterization of bioethanol production from hexoses and xylose by the white rot fungus trametes versicolor
  • 2012
  • Ingår i: Bioenergy Research. - : Springer Science and Business Media LLC. - 1939-1234 .- 1939-1242. ; 5:2, s. 277-285
  • Tidskriftsartikel (refereegranskat)abstract
    • Bioethanol production by white rot fungus (Trametes versicolor), identified from fungal mixture in naturally decomposing wood samples, from hexoses and xylose was characterized. Results showed that T. versicolor can grow in culture, under hypoxic conditions, with various mixtures of hexoses and xylose and only xylose. Xylose was efficiently fermented to ethanol in media containing mixtures of hexoses and xylose, such as MBMC and G11XY11 media (Table 1), yielding ethanol concentrations of 20.0 and 9.02 g/l, respectively, after 354 h of hypoxic culture. Very strong correlations were found between ethanolic fermentation (alcohol dehydrogenase activity and ethanol production), sugar consumption and xylose catabolism (xylose reductase, xylitol dehydrogenase and xylulokinase activities) after 354 h in culture in MBMC medium. In a medium (G11XY11) containing a 1:1 glucose/xylose ratio, fermentation efficiency of total sugars into ethanol was 80% after 354 h.
  •  
7.
  • Langeveld, H., et al. (författare)
  • Assessing Environmental Impacts of Short Rotation Coppice (SRC) Expansion: Model Definition and Preliminary Results
  • 2012
  • Ingår i: Bioenergy Research. - : Springer Science and Business Media LLC. - 1939-1234 .- 1939-1242. ; 5:3, s. 621-635
  • Tidskriftsartikel (refereegranskat)abstract
    • Short rotation coppice (SRC) systems can play a role as feedstock for bioenergy supply contributing to EU energy and climate policy targets. A scenario depicting intensive arable crop cultivation in a homogeneous landscape (lacking habitat structures) was compared to a scenario including SRC cultivation on 20 % of arable land. A range of indicators was selected to assess the consequences of SRC on soil, water and biodiversity, using data from the Rating-SRC project (Sweden and Germany). The results of the assessment were presented using spider diagrams. Establishment and use of SRC for bioenergy has both positive and negative effects. The former include increased carbon sequestration and reduced GHG emissions as well as reduced soil erosion, groundwater nitrate and surface runoff. SRC can be used in phytoremediation and improves plant and breeding bird biodiversity (exceptions: grassland and arable land species) but should not be applied in dry areas or on soils high in toxic trace elements (exception: cadmium). The scenario-based analysis was found useful for studying the consequences of SRC cultivation at larger scales. Limitations of the approach are related to data requirements and compatibility and its restricted ability to cover spatial diversity and dynamic processes. The findings should not be generalised beyond the representativeness of the data used.
  •  
8.
  • Natarajan, Karthikeyan, et al. (författare)
  • Optimal Locations for Methanol and CHP Production in Eastern Finland
  • 2012
  • Ingår i: Bioenergy Research. - : Springer Science and Business Media LLC. - 1939-1234 .- 1939-1242. ; 5:2, s. 412-423
  • Tidskriftsartikel (refereegranskat)abstract
    • Finland considers energy production from woody biomass as an efficient energy planning strategy to increase the domestic renewable energy production in order to substitute fossil fuel consumption and reduce greenhouse gas emissions. Consequently, a number of developmental activities are implemented in the country, and one of them is the installation of second generation liquid biofuel demonstration plants. In this study, two gasification-based biomass conversion technologies, methanol and combined heat and power (CHP) production, are assessed for commercialization. Spatial information on forest resources, sawmill residues, existing biomass-based industries, energy demand regions, possible plant locations, and a transport network of Eastern Finland is fed into a geographically explicit Mixed Integer Programming model to minimize the costs of the entire supply chain which includes the biomass supply, biomass and biofuel transportation, biomass conversion, energy distribution, and emissions. The model generates a solution by determining the optimal number, locations, and technology mix of bioenergy production plants. Scenarios were created with a focus on biomass and energy demand, plant characteristics, and cost variations. The model results state that the biomass supply and high energy demand are found to have a profound influence on the potential bioenergy production plant locations. The results show that methanol can be produced in Eastern Finland under current market conditions at an average cost of 0.22 €/l with heat sales (0.34 €/l without heat sales). The introduction of energy policy tools, like cost for carbon, showed a significant influence on the choice of technology and CO 2 emission reductions. The results revealed that the methanol technology was preferred over the CHP technology at higher carbon dioxide cost (>145 €/t CO2). The results indicate that two methanol plants (360 MW biomass) are needed to be built to meet the transport fuel demand of Eastern Finland
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy