SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2050 4527 srt2:(2014)"

Sökning: L773:2050 4527 > (2014)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Asfaw Idosa, Berhane, 1977-, et al. (författare)
  • C10X polymorphism in the CARD8 gene is associated with bacteraemia
  • 2014
  • Ingår i: Immunity, inflammation and disease. - West Sussex, UK : John Wiley & Sons. - 2050-4527. ; 2:1, s. 13-20
  • Tidskriftsartikel (refereegranskat)abstract
    • The NLRP3 inflammasome is an intracellular multi-protein complex that triggers caspase-1 mediated maturation of interleukin-1β (IL-1β); one of the most potent mediators of inflammation and a major cytokine produced during severe infections, like sepsis. However, the excessive cytokine levels seem to stage for tissue injury and organ failure, and high levels of IL-1β correlates with severity and mortality of sepsis. Instead, recent data suggest caspase-1 to function as a guardian against severe infections. CARD8 has been implied to regulate the synthesis of IL-1β via interaction to caspase-1. In recent years, polymorphism of CARD8 (C10X) per se or in combination with NLRP3 (Q705K) has been implicated with increased risk of inflammation. The aim was to investigate the correlation of these polymorphisms with severe blood stream infection. Human DNA was extracted from blood culture bottles that were found to be positive for microbial growth (i.e. patients with bacteraemia). Polymorphisms Q705K in the NLRP3 gene and C10X in the CARD8 gene were genotyped using TaqMan genotyping assay. The results were compared to healthy controls and to samples from patients with negative cultures. The polymorphism C10X was significantly over-represented among patients with bacteraemia as compared to healthy controls, whereas patients with negative blood culture were not associated with a higher prevalence. No association was observed with polymorphism Q705K of NLRP3 in either group of patients. Patients carrying polymorphism C10X in the CARD8 gene are at increased risk of developing bacteraemia and severe inflammation.
  •  
2.
  • Bernardi, Angelina I, et al. (författare)
  • Effects of lasofoxifene and bazedoxifene on B cell development and function.
  • 2014
  • Ingår i: Immunity, inflammation and disease. - : Wiley. - 2050-4527. ; 2:4, s. 214-25
  • Tidskriftsartikel (refereegranskat)abstract
    • The third generation selective estrogen receptor modulators lasofoxifene (las) and bazedoxifene (bza) are indicated for treatment of postmenopausal osteoporosis. 17β-Estradiol (E2) and the second generation SERM raloxifene (ral) have major effects on the immune system, particularly on B cells. Treatment with E2 or ral inhibits B lymphopoiesis and treatment with E2, but not ral, stimulates antibody production. The effects of las and bza on the immune system have not been studied. Therefore, the aim of this study was to investigate their role in B cell development, maturation, and function. C57BL/6 mice were sham-operated or ovariectomized (ovx) and treated with vehicle, E2, ral, las, or bza. All substances increased total bone mineral density in ovx mice, as measured by peripheral quantitative computed tomography. In uterus, bza alone lacked agonistic effect in ovx mice and even acted as an antagonist in sham mice. As expected, E2 decreased B cell numbers at all developmental stages from pre-BI cells (in bone marrow) to transitional 1 (T1) B cells (in spleen) and increased marginal zone (MZ) B cells as determined by flow cytometry. However, treatment with las or bza only decreased the last stages of bone marrow B cell development and splenic T1 B cells, but had no effect MZ B cells. E2 increased antibody-producing cells quantified by ELISPOT, but las or bza did not. In conclusion, las and bza differ from E2 by retaining normal number of cells at most B cell stages during B lymphopoiesis and maturation and by not increasing antibody-producing cells.
  •  
3.
  • Cromvik, Julia, 1980, et al. (författare)
  • Eosinophils in the blood of hematopoietic stem cell transplanted patients are activated and have different molecular marker profiles in acute and chronic graft-versus-host disease.
  • 2014
  • Ingår i: Immunity, inflammation and disease. - : Wiley. - 2050-4527. ; 2:2, s. 99-113
  • Tidskriftsartikel (refereegranskat)abstract
    • While increased numbers of eosinophils may be detected in patients with graft-versus-host disease (GVHD) following hematopoietic stem cell transplantation, it is not known if eosinophils play a role in GVHD. The aims of this study were to determine: whether eosinophils are activated during GVHD; whether the patterns of activation are similar in acute and chronic GVHD; and the ways in which systemic corticosteroids affect eosinophils. Transplanted patients (n = 35) were investigated for eosinophil numbers and the expression levels of 16 eosinophilic cell surface markers using flow cytometry; all the eosinophil data were analyzed by the multivariate method OPLS-DA. Different patterns of molecule expression were observed on the eosinophils from patients with acute, chronic, and no GVHD, respectively. The molecules that provided the best discrimination between acute and chronic GVHD were: the activation marker CD9; adhesion molecules CD11c and CD18; chemokine receptor CCR3; and prostaglandin receptor CRTH2. Patients with acute or chronic GVHD who received systemic corticosteroid treatment showed down-regulation of the cell surface markers on their eosinophils, whereas corticosteroid treatment had no effect on the eosinophil phenotype in the patients without GVHD. In summary, eosinophils are activated in GVHD, display different activation profiles in acute and chronic GVHD, and are highly responsive to systemic corticosteroids.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy