SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2056 3744 srt2:(2021)"

Sökning: L773:2056 3744 > (2021)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berdan, Emma L, 1983, et al. (författare)
  • A large chromosomal inversion shapes gene expression in seaweed flies (Coelopa frigida)
  • 2021
  • Ingår i: EVOLUTION LETTERS. - : Oxford University Press (OUP). - 2056-3744. ; 5:6, s. 607-624
  • Tidskriftsartikel (refereegranskat)abstract
    • Inversions often underlie complex adaptive traits, but the genic targets inside them are largely unknown. Gene expression profiling provides a powerful way to link inversions with their phenotypic consequences. We examined the effects of the Cf-Inv(1) inversion in the seaweed fly Coelopa frigida on gene expression variation across sexes and life stages. Our analyses revealed that Cf-Inv(1) shapes global expression patterns, most likely via linked variation, but the extent of this effect is variable, with much stronger effects in adults than larvae. Furthermore, within adults, both common as well as sex-specific patterns were found. The vast majority of these differentially expressed genes mapped to Cf-Inv(1). However, genes that were differentially expressed in a single context (i.e., in males, females, or larvae) were more likely to be located outside of Cf-Inv(1). By combining our findings with genomic scans for environmentally associated SNPs, we were able to pinpoint candidate variants in the inversion that may underlie mechanistic pathways that determine phenotypes. Together the results of this study, combined with previous findings, support the notion that the polymorphic Cf-Inv(1) inversion in this species is a major factor shaping both coding and regulatory variation resulting in highly complex adaptive effects.
  •  
2.
  • Egan, Paul A., et al. (författare)
  • Pollinators and herbivores interactively shape selection on strawberry defence and attraction
  • 2021
  • Ingår i: Evolution Letters. - : John Wiley & Sons. - 2056-3744. ; 5:6, s. 636-643
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Tripartite interactions between plants, herbivores, and pollinators hold fitness consequences for most angiosperms. However, little is known on how plants evolve in response-and in particular what the net selective outcomes are for traits of shared relevance to pollinators and herbivores. In this study, we manipulated herbivory ("presence" and "absence" treatments) and pollination ("open" and "hand pollination" treatments) in a full factorial common-garden experiment with woodland strawberry (Fragaria vesca L.). This design allowed us to quantify the relative importance and interactive effects of herbivore- and pollinator-mediated selection on nine traits related to plant defence and attraction. Our results showed that pollinators imposed stronger selection than herbivores on traits related to both direct and indirect (i.e., tritrophic) defence. However, conflicting selection was imposed on inflorescence density: a trait that appears to be shared by herbivores and pollinators as a host plant signal. However, in all cases, selection imposed by one agent depended largely on the presence or ecological effect of the other, suggesting that dynamic patterns of selection could be a common outcome of these interactions in natural populations. As a whole, our findings highlight the significance of plant-herbivore-pollinator interactions as potential drivers of evolutionary change, and reveal that pollinators likely play an underappreciated role as selective agents on direct and in direct plant defence.
  •  
3.
  • Grieshop, Karl, et al. (författare)
  • Selection in males purges the mutation load on female fitness
  • 2021
  • Ingår i: Evolution Letters. - : John Wiley & Sons. - 2056-3744. ; 5:4, s. 328-343
  • Tidskriftsartikel (refereegranskat)abstract
    • Theory predicts that the ability of selection and recombination to purge mutation load is enhanced if selection against deleterious genetic variants operates more strongly in males than females. However, direct empirical support for this tenet is limited, in part because traditional quantitative genetic approaches allow dominance and intermediate-frequency polymorphisms to obscure the effects of the many rare and partially recessive deleterious alleles that make up the main part of a population's mutation load. Here, we exposed the partially recessive genetic load of a population of Callosobruchus maculatus seed beetles via successive generations of inbreeding, and quantified its effects by measuring heterosis-the increase in fitness experienced when masking the effects of deleterious alleles by heterozygosity-in a fully factorial sex-specific diallel cross among 16 inbred strains. Competitive lifetime reproductive success (i.e., fitness) was measured in male and female outcrossed F(1)s as well as inbred parental "selfs," and we estimated the 4 x 4 male-female inbred-outbred genetic covariance matrix for fitness using Bayesian Markov chain Monte Carlo simulations of a custom-made general linear mixed effects model. We found that heterosis estimated independently in males and females was highly genetically correlated among strains, and that heterosis was strongly negatively genetically correlated to outbred male, but not female, fitness. This suggests that genetic variation for fitness in males, but not in females, reflects the amount of (partially) recessive deleterious alleles segregating at mutation-selection balance in this population. The population's mutation load therefore has greater potential to be purged via selection in males. These findings contribute to our understanding of the prevalence of sexual reproduction in nature and the maintenance of genetic variation in fitness-related traits.
  •  
4.
  • Segami, Julia Carolina, et al. (författare)
  • Should females prefer old males?
  • 2021
  • Ingår i: Evolution Letters. - : John Wiley & Sons. - 2056-3744. ; 5:5, s. 507-520
  • Tidskriftsartikel (refereegranskat)abstract
    • Whether females should prefer to mate with old males is controversial. Old males may sire offspring of low quality because of an aging germline, but their proven ability to reach an old age can also be an excellent indicator of superior genetic quality, especially in natural populations. These genetic effects are, however, hard to study in nature, because they are often confounded with direct benefits offered by old males to the female, such as experience and high territory quality. We, therefore, used naturally occurring extra-pair young to disentangle different aspects of male age on female fitness in a natural population of collared flycatchers because any difference between within- and extra-pair young within a nest should be caused by paternal genetic effects only. Based on 18 years of long-term data, we found that females paired with older males as social partners experienced an overall reproductive advantage. However, offspring sired by old males were of lower quality as compared to their extra-pair half-siblings, whereas the opposite was found in nests attended by young males. These results imply a negative genetic effect of old paternal age, given that extra-pair males are competitive middle-age males. Thus, offspring may benefit from being sired by young males but raised by old males, to maximize both genetic and direct effects. Our results show that direct and genetic benefits from pairing with old males may act in opposing directions and that the quality of the germline may deteriorate before other signs of senescence become obvious.
  •  
5.
  • Wiberg, R. Axel W., et al. (författare)
  • Experimental evolution supports signatures of sexual selection in genomic divergence
  • 2021
  • Ingår i: Evolution Letters. - : Oxford University Press (OUP). - 2056-3744. ; 5:3, s. 214-229
  • Tidskriftsartikel (refereegranskat)abstract
    • Comparative genomics has contributed to the growing evidence that sexual selection is an important component of evolutionary divergence and speciation. Divergence by sexual selection is implicated in faster rates of divergence of the X chromosome and of genes thought to underlie sexually selected traits, including genes that are sex biased in expression. However, accurately inferring the relative importance of complex and interacting forms of natural selection, demography, and neutral processes that occurred in the evolutionary past is challenging. Experimental evolution provides an opportunity to apply controlled treatments for multiple generations and examine the consequent genomic divergence. Here, we altered sexual selection intensity, elevating sexual selection in polyandrous lines and eliminating it in monogamous lines, and examined patterns of allele frequency divergence in the genome of Drosophila pseudoobscura after more than 160 generations of experimental evolution. Divergence is not uniform across the genome but concentrated in islands, many of which contain candidate genes implicated in mating behaviors and other sexually selected phenotypes. These are more often seen on the X chromosome, which also shows greater divergence in F-ST than neutral expectations. There are characteristic signatures of selection seen in these regions, with lower diversity on the X chromosome than the autosomes, and differences in diversity on the autosomes between selection regimes. Reduced Tajima's D within some of the divergent regions may imply that selective sweeps have occurred, despite considerable recombination. These changes are associated with both differential gene expression between the lines and sex-biased gene expression within the lines. Our results are very similar to those thought to implicate sexual selection in divergence between species and natural populations, and hence provide experimental support for the likely role of sexual selection in driving such types of genetic divergence, but also illustrate how variable outcomes can be for different genomic regions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy