SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2169 9097 OR L773:2169 9100 srt2:(2015-2019)"

Sökning: L773:2169 9097 OR L773:2169 9100 > (2015-2019)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Becker, T. M., et al. (författare)
  • The Far-UV Albedo of Europa From HST Observations
  • 2018
  • Ingår i: Journal of Geophysical Research - Planets. - : AMER GEOPHYSICAL UNION. - 2169-9097 .- 2169-9100. ; 123:5, s. 1327-1342
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an analysis of Europa's far-UV spectral albedo using observations during the 1999-2015 time period made by the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. Disk-integrated observations show that the far-UV spectrum in the similar to 130 to 170-nm range is relatively flat or slightly blue (increasing albedo with decreasing wavelength) for the studied hemispheres: the leading, trailing, and anti-Jovian hemispheres. At Lyman- (121.6nm), the albedo of the trailing hemisphere continues the blue trend, but it reddens for the leading hemisphere. Also at this wavelength, the albedo of the leading hemisphere, which is higher than the trailing hemisphere at near-UV and visible wavelengths, is lower than the trailing hemisphere, exhibiting spectral inversion. We find no evidence of a sharp water-ice absorption edge at 165nm on any hemisphere of Europa, which is intriguing since such an absorption feature has been observed on the icy Saturnian satellites. Plain Language Summary We used observations spanning from 1999 to 2015 obtained by the Space Telescope Imaging Spectrograph on the Hubble Space Telescope to study the surface reflectance of Europa at far-ultraviolet (UV) wavelengths. We find that Europa has a low reflectance in the UV and that there is little variation in the surface brightness at most of the UV wavelengths. When observed at visible wavelengths, one of Europa's hemispheres is brighter than the other, but at the UV wavelength of 121.6nm, the hemisphere brightness is reversed. We also find that Europa looks different from the icy moons of Saturn at far-UV wavelengths.
  •  
2.
  •  
3.
  •  
4.
  • Cui, J., et al. (författare)
  • The electron thermal structure in the dayside Martian ionosphere implied by the MGS radio occultation data
  • 2015
  • Ingår i: Journal of Geophysical Research - Planets. - 2169-9097 .- 2169-9100. ; 120:2, s. 278-286
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose a revised Chapman model for the ionosphere of Mars by allowing for vertical variation of electron temperature. An approximate energy balance between solar EUV heating and CO2 collisional cooling is applied in the dayside Martian ionosphere, analogous to the method recently proposed by Withers et al. (2014). The essence of the model is to separate the contributions of the neutral and electron thermal structures to the apparent width of the main ionospheric layer. Application of the model to the electron density profiles from the Mars Global Surveyor (MGS) radio occultation measurements reveals a clear trend of elevated electron temperature with increasing solar zenith angle (SZA). It also reveals that the characteristic length scale for the change of electron temperature with altitude decreases with increasing SZA. These observations may imply enhanced topside heat influx near the terminator, presumably an outcome of the solar wind interactions with the Martian upper atmosphere. Our analysis also reveals a tentative asymmetry in electron temperature between the northern and southern hemispheres, consistent with the scenario of elevated electron temperature within minimagnetospheres.
  •  
5.
  • Farrell, W. M., et al. (författare)
  • Ion trapping by dust grains : Simulation applications to the Enceladus plume
  • 2017
  • Ingår i: Journal of Geophysical Research - Planets. - : AMER GEOPHYSICAL UNION. - 2169-9097 .- 2169-9100. ; 122:4, s. 729-743
  • Tidskriftsartikel (refereegranskat)abstract
    • Using a particle-in-cell electrostatic simulation, we examine the conditions that allow low-energy ions, like those produced in the Enceladus plume, to be attracted and trapped within the sheaths of negatively charged dust grains. The conventional wisdom is that all new ions produced in the Enceladus plume are free to get picked up (i.e., accelerated by the local E field to then undergo vB acceleration). However, we suggest herein that the presence of submicron-charged dust in the plume impedes this pickup process since the local grain electric field greatly exceeds the corotation E fields. The simulations demonstrate that cold ions will tend to accelerate toward the negatively charged grains and become part of the ion plasma sheath. These trapped ions will move with the grains, exiting the plume region at the dust speed. We suggest that Cassini's Langmuir probe is measuring the entire ion population (free and trapped ions), while the Cassini magnetometer detects the magnetic perturbations associated with pickup currents from the smaller population of free ions, with this distinction possibly reconciling the ongoing debate in the literature on the ion density in the plume.
  •  
6.
  • Freissinet, C., et al. (författare)
  • Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars
  • 2015
  • Ingår i: Journal of Geophysical Research - Planets. - 2169-9097 .- 2169-9100. ; 120:3, s. 495-514
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sample Analysis at Mars (SAM) instrument [Mahaffy et al., 2012] onboard the Mars Science Laboratory (MSL) Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater [Grotzinger et al., 2012]. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration and long-term preservation. This will guide the future search for biosignatures [Summons et al., 2011]. Here we report the definitive identification of chlorobenzene (150–300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS), and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of martian chlorine and organic carbon derived from martian sources (e.g. igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets or interplanetary dust particles.
  •  
7.
  • G. Trainer, Melissa, et al. (författare)
  • Seasonal Variations in Atmospheric Composition as Measured in Gale Crater, Mars
  • 2019
  • Ingår i: Journal of Geophysical Research - Planets. - : John Wiley & Sons. - 2169-9097 .- 2169-9100. ; 124:11, s. 3000-3024
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sample Analysis at Mars (SAM) instrument onboard the Mars Science Laboratory Curiosity rover measures the chemical composition of major atmospheric species (CO2, N2, 40Ar, O2, and CO) through a dedicated atmospheric inlet. We report here measurements of volume mixing ratios in Gale Crater using the SAM quadrupole mass spectrometer, obtained over a period of nearly 5 years (3 Mars years) from landing. The observation period spans the northern summer of MY 31 and solar longitude (LS) of 175° through spring of MY 34, LS = 12°. This work expands upon prior reports of the mixing ratios measured by SAM QMS in the first 105 sols of the mission. The SAM QMS atmospheric measurements were taken periodically, with a cumulative coverage of four or five experiments per season on Mars. Major observations include the seasonal cycle of CO2, N2, and Ar, which lags approximately 20–40° of LS behind the pressure cycle driven by CO2 condensation and sublimation from the winter poles. This seasonal cycle indicates that transport occurs on faster timescales than mixing. The mixing ratio of O2 shows significant seasonal and interannual variability, suggesting an unknown atmospheric or surface process at work. The O2 measurements are compared to several parameters, including dust optical depth and trace CH4 measurements by Curiosity. We derive annual mean volume mixing ratios for the atmosphere in Gale Crater: CO2 = 0.951 (±0.003), N2 = 0.0259 (±0.0006), 40Ar = 0.0194 (±0.0004), O2 = 1.61 (±0.09) x 10‐3, and CO = 5.8 (±0.8) x 10‐4.
  •  
8.
  • Guzewich, Scott D., et al. (författare)
  • The Vertical Dust Profile over Gale Crater, Mars
  • 2017
  • Ingår i: Journal of Geophysical Research - Planets. - : American Geophysical Union (AGU). - 2169-9097 .- 2169-9100. ; 122:12, s. 2779-2792
  • Tidskriftsartikel (refereegranskat)abstract
    • We create a vertically coarse, but complete, vertical profile of dust mixing ratio from the surface to the upper atmosphere over Gale Crater, Mars, using the frequent joint atmospheric observations of the orbiting Mars Climate Sounder (MCS) and the Mars Science Laboratory (MSL) Curiosity rover. Using these data and an estimate of planetary boundary layer (PBL) depth from the MarsWRF general circulation model, we divide the vertical column into three regions. The first region is the Gale Crater PBL, the second is the MCS-sampled region, and the third is between these first two. We solve for a well-mixed dust mixing ratio within this third (middle) layer of atmosphere to complete the profile.We identify a unique seasonal cycle of dust within each atmospheric layer. Within the Gale PBL, dust mixing ratio maximizes near southern hemisphere summer solstice (Ls = 270°) and minimizes near winter solstice (Ls = 90-100°) with a smooth sinusoidal transition between them. However, the layer above Gale Crater and below the MCS-sampled region more closely follows the global opacity cycle and has a maximum in opacity near Ls = 240° and exhibits a local minimum (associated with the “solsticial pause” in dust storm activity) near Ls = 270°. With knowledge of the complete vertical dust profile, we can also assess the frequency of high-altitude dust layers over Gale. We determine that 36% of MCS profiles near Gale Crater contain an “absolute” high-altitude dust layer wherein the dust mixing ratio is the maximum in the entire vertical column.
  •  
9.
  • Kahanpää, Henrik, et al. (författare)
  • Convective vortices and dust devils at the MSL landing site : annual variability
  • 2016
  • Ingår i: Journal of Geophysical Research - Planets. - 2169-9097 .- 2169-9100. ; 121:8, s. 1514-1549
  • Tidskriftsartikel (refereegranskat)abstract
    • Two hundred fifty-two transient drops in atmospheric pressure, likely caused by passing convective vortices, were detected by the Rover Environmental Monitoring Station instrument during the first Martian year of the Mars Science Laboratory (MSL) landed mission. These events resembled the vortex signatures detected by the previous Mars landers Pathfinder and Phoenix; however, the MSL observations contained fewer pressure drops greater than 1.5 Pa and none greater than 3.0 Pa. Apparently, these vortices were generally not lifting dust as only one probable dust devil has been observed visually by MSL. The obvious explanation for this is the smaller number of strong vortices with large central pressure drops since according to Arvidson et al. [2014] ample dust seems to be present on the surface. The annual variation in the number of detected convective vortices followed approximately the variation in Dust Devil Activity (DDA) predicted by the MarsWRF numerical climate model. This result does not prove, however, that the amount of dust lifted by dust devils would depend linearly on DDA, as is assumed in several numerical models of the Martian atmosphere, since dust devils are only the most intense fraction of all convective vortices on Mars, and the amount of dust that can be lifted by a dust devil depends on its central pressure drop. Sol-to-sol variations in the number of vortices were usually small. However, on 1 Martian solar day a sudden increase in vortex activity, related to a dust storm front, was detected. 
  •  
10.
  • Navarro‐González, Rafael, et al. (författare)
  • Abiotic Input of Fixed Nitrogen by Bolide Impacts to Gale Crater During the Hesperian : Insights From the Mars Science Laboratory
  • 2019
  • Ingår i: Journal of Geophysical Research - Planets. - : John Wiley & Sons. - 2169-9097 .- 2169-9100. ; 124:1, s. 94-113
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular hydrogen (H2) from volcanic emissions is suggested to warm the Martian surface when carbon dioxide (CO2) levels dropped from the Noachian (4100 to 3700 Myr) to the Hesperian (3700 to 3000 Myr). Its presence is expected to shift the conversion of molecular nitrogen (N2) into different forms of fixed nitrogen (N). Here we present experimental data and theoretical calculations that investigate the efficiency of nitrogen fixation by bolide impacts in CO2‐N2 atmospheres with or without H2. Surprisingly, nitric oxide (NO) was produced more efficiently in 20% H2 in spite of being a reducing agent and not likely to increase the rate of nitrogen oxidation. Nevertheless, its presence led to a faster cooling of the shock wave raising the freeze‐out temperature of NO resulting in an enhanced yield. We estimate that the nitrogen fixation rate by bolide impacts varied from 7 × 10−4 to 2 × 10−3 g N·Myr−1·cm−2 and could imply fluvial concentration to explain the nitrogen (1.4 ± 0.7 g N·Myr−1·cm−2) detected as nitrite (NO2−) and nitrate (NO3−) by Curiosity at Yellowknife Bay. One possible explanation is that the nitrogen detected in the lacustrine sediments at Gale was deposited entirely on the crater's surface and was subsequently dissolved and transported by superficial and ground waters to the lake during favorable wet climatic conditions. The nitrogen content sharply decreases in younger sediments of the Murray formation suggesting a decline of H2 in the atmosphere and the rise of oxidizing conditions causing a shortage in the supply to putative microbial life.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy