SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2197 425X srt2:(2018)"

Sökning: L773:2197 425X > (2018)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Broberg, Ellen, et al. (författare)
  • A new way of monitoring mechanical ventilation by measurement of particle flow from the airways using Pexa method in vivo and during ex vivo lung perfusion in DCD lung transplantation
  • 2018
  • Ingår i: Intensive Care Medicine Experimental. - : Springer Science and Business Media LLC. - 2197-425X. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Different mechanical ventilation settings are known to affect lung preservation for lung transplantation. Measurement of particle flow in exhaled air may allow online assessment of the impact of ventilation before changes in the tissue can be observed. We hypothesized that by analyzing the particle flow, we could understand the impact of different ventilation parameters. Methods: Particle flow was monitored in vivo, post mortem, and in ex vivo lung perfusion (EVLP) in six porcines with the Pexa (particles in exhaled air) instrument. Volume-controlled ventilation (VCV) and pressure-controlled ventilation (PCV) were used to compare small versus large tidal volumes. The surfactant lipids dipalmitoylphosphatidylcholine (DPPC) and phosphatidylcholine (PC) were quantified by mass spectrometry. Results: In vivo the particle mass in VCV1 was significantly lower than in VCV2 (p= 0.0186), and the particle mass was significantly higher in PCV1 than in VCV1 (p= 0.0322). In EVLP, the particle mass in VCV1 was significantly higher than in PCV1 (p= 0.0371), and the particle mass was significantly higher in PCV2 than in PCV1 (p= 0.0127). DPPC was significantly higher in EVLP than in vivo. Conclusions: Here, we introduce a new method for measuring particle flow during mechanical ventilation and confirm that these particles can be collected and analyzed. VCV resulted in a lower particle flow in vivo but not in EVLP. In all settings, large tidal volumes resulted in increased particle flow. We found that DPPC was significantly increased comparing in vivo with EVLP. This technology may be useful for developing strategies to preserve the lung and has a high potential to detect biomarkers.
  •  
2.
  • Dhanani, Jayesh A, et al. (författare)
  • A research pathway for the study of the delivery and disposition of nebulised antibiotics: an incremental approach from in vitro to large animal models
  • 2018
  • Ingår i: Intensive Care Medicine Experimental. - : Springer Science and Business Media LLC. - 2197-425X. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Nebulised antibiotics are frequently used for the prevention or treatment of ventilator-associated pneumonia. Many factors may influence pulmonary drug concentrations with inaccurate dosing schedules potentially leading to therapeutic failure and/or the emergence of antibiotic resistance. We describe a research pathway for studying the pharmacokinetics of a nebulised antibiotic during mechanical ventilation using in vitro methods and ovine models, using tobramycin as the study antibiotic.
  •  
3.
  •  
4.
  • Piel, Sarah, et al. (författare)
  • Bioenergetic bypass using cell-permeable succinate, but not methylene blue, attenuates metformin-induced lactate production
  • 2018
  • Ingår i: Intensive Care Medicine Experimental. - : Springer Science and Business Media LLC. - 2197-425X. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Metformin is the most common pharmacological treatment for type 2 diabetes. It is considered safe but has been associated with the development of lactic acidosis under circumstances where plasma concentrations exceed therapeutic levels. Metformin-induced lactic acidosis has been linked to the drug's toxic effect on mitochondrial function. Current treatment strategies aim to remove the drug and correct for the acidosis. With a mortality of 20%, complementary treatment strategies are needed. In this study, it was investigated whether targeting mitochondria with pharmacological agents that bypass metformin-induced mitochondrial dysfunction can counteract the energetic deficit linked to toxic doses of metformin.METHODS: The redox agent methylene blue and the cell-permeable succinate prodrug NV118 were evaluated by measuring mitochondrial respiration and lactate production of human platelets exposed to metformin and co-treated with either of the two pharmacological bypass agents.RESULTS: The cell-permeable succinate prodrug NV118 increased mitochondrial respiration which was linked to phosphorylation by the ATP-synthase and alleviated the increase in lactate production induced by toxic doses of metformin. The redox agent methylene blue, in contrast, failed to mitigate the metformin-induced changes in mitochondrial respiration and lactate generation.CONCLUSIONS: The cell-permeable succinate prodrug NV118 bypassed the mitochondrial dysfunction and counteracted the energy deficit associated with toxic doses of metformin. If similar effects of NV118 prove translatable to an in vivo effect, this pharmacological strategy presents as a promising complementary treatment for patients with metformin-induced lactic acidosis.
  •  
5.
  • Tydén, Jonas, et al. (författare)
  • Heparin-binding protein in ventilator-induced lung injury.
  • 2018
  • Ingår i: Intensive Care Medicine Experimental. - : SpringerOpen. - 2197-425X. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Although mechanical ventilation is often lifesaving, it can also cause injury to the lungs. The lung injury is caused by not only high pressure and mechanical forces but also by inflammatory processes that are not fully understood. Heparin-binding protein (HBP), released by activated granulocytes, has been indicated as a possible mediator of increased vascular permeability in the lung injury associated with trauma and sepsis. We investigated if HBP levels were increased in the bronchoalveolar lavage fluid (BALF) or plasma in a pig model of ventilator-induced lung injury (VILI). We also investigated if HBP was present in BALF from healthy volunteers and in intubated patients in the intensive care unit (ICU).METHODS: Anaesthetized pigs were randomized to receive ventilation with either tidal volumes of 8 ml/kg (controls, n = 6) or 20 ml/kg (VILI group, n = 6). Plasma and BALF samples were taken at 0, 1, 2, 4, and 6 h. In humans, HBP levels in BALF were sampled from 16 healthy volunteers and from 10 intubated patients being cared for in the ICU.RESULTS: Plasma levels of HBP did not differ between pigs in the control and VILI groups. The median HBP levels in BALF were higher in the VILI group after 6 h of ventilation compared to those in the controls (1144 ng/ml (IQR 359-1636 ng/ml) versus 89 ng/ml (IQR 33-191 ng/ml) ng/ml, respectively, p = 0.02). The median HBP level in BALF from healthy volunteers was 0.90 ng/ml (IQR 0.79-1.01 ng/ml) as compared to 1959 ng/ml (IQR 612-3306 ng/ml) from intubated ICU patients (p < 0.001).CONCLUSIONS: In a model of VILI in pigs, levels of HBP in BALF increased over time compared to controls, while plasma levels did not differ between the two groups. HBP in BALF was high in intubated ICU patients in spite of the seemingly non-harmful ventilation, suggesting that inflammation from other causes might increase HBP levels.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy