SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2197 425X srt2:(2023)"

Sökning: L773:2197 425X > (2023)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bandert, Anna, et al. (författare)
  • In an endotoxaemic model, antibiotic clearance can be affected by different central venous catheter positions, during renal replacement therapy
  • 2023
  • Ingår i: Intensive Care Medicine Experimental. - : Springer Nature. - 2197-425X. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: In intensive care, different central venous catheters (CVC) are often used for infusion of drugs. If a patient is treated with continuous renal replacement therapy (CRRT) a second catheter, a central venous dialysis catheter (CVDC), is needed. Placing the catheters close together might pose a risk that a drug infused in a CVC could be directly aspirated into a CRRT machine and cleared from the blood without giving the effect intended. The purpose of this study was to elucidate if drug clearance is affected by different catheter placement, during CRRT. In this endotoxaemic animal model, an infusion of antibiotics was administered in a CVC placed in the external jugular vein (EJV). Antibiotic clearance was compared, whether CRRT was through a CVDC placed in the same EJV, or in a femoral vein (FV). To reach a target mean arterial pressure (MAP), noradrenaline was infused through the CVC and the dose was compared between the CDVDs.RESULTS: The main finding in this study was that clearance of antibiotics was higher when both catheter tips were in the EJV, close together, compared to in different vessels, during CRRT. The clearance of gentamicin was 21.0 ± 7.3 vs 15.5 ± 4.2 mL/min (p 0.006) and vancomycin 19.3 ± 4.9 vs 15.8 ± 7.1 mL/min (p 0.021). The noradrenaline dose to maintain a target MAP also showed greater variance with both catheters in the EJV, compared to when catheters were placed in different vessels.CONCLUSION: The results in this study indicate that close placement of central venous catheter tips could lead to unreliable drug concentration, due to direct aspiration, during CRRT.
  •  
2.
  • Barrueta Tenhunen, Annelie, et al. (författare)
  • Fluid restrictive resuscitation with high molecular weight hyaluronan infusion in early peritonitis sepsis
  • 2023
  • Ingår i: Intensive Care Medicine Experimental. - : Springer Nature. - 2197-425X. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Sepsis is a condition with high morbidity and mortality. Prompt recognition and initiation of treatment is essential. Despite forming an integral part of sepsis management, fluid resuscitation may also lead to volume overload, which in turn is associated with increased mortality. The optimal fluid strategy in sepsis resuscitation is yet to be defined. Hyaluronan, an endogenous glycosaminoglycan with high affinity to water is an important constituent of the endothelial glycocalyx. We hypothesized that exogenously administered hyaluronan would counteract intravascular volume depletion and contribute to endothelial glycocalyx integrity in a fluid restrictive model of peritonitis. In a prospective, blinded model of porcine peritonitis sepsis, we randomized animals to intervention with hyaluronan (n = 8) or 0.9% saline (n = 8). The animals received an infusion of 0.1% hyaluronan 6 ml/kg/h, or the same volume of saline, during the first 2 h of peritonitis. Stroke volume variation and hemoconcentration were comparable in the two groups throughout the experiment. Cardiac output was higher in the intervention group during the infusion of hyaluronan (3.2 ± 0.5 l/min in intervention group vs 2.7 ± 0.2 l/min in the control group) (p = 0.039). The increase in lactate was more pronounced in the intervention group (3.2 ± 1.0 mmol/l in the intervention group and 1.7 ± 0.7 mmol/l in the control group) at the end of the experiment (p < 0.001). Concentrations of surrogate markers of glycocalyx damage; syndecan 1 (0.6 ± 0.2 ng/ml vs 0.5 ± 0.2 ng/ml, p = 0.292), heparan sulphate (1.23 ± 0.2 vs 1.4 ± 0.3 ng/ml, p = 0.211) and vascular adhesion protein 1 (7.0 ± 4.1 vs 8.2 ± 2.3 ng/ml, p = 0.492) were comparable in the two groups at the end of the experiment. In conclusion, hyaluronan did not counteract intravascular volume depletion in early peritonitis sepsis. However, this finding is hampered by the short observation period and a beneficial effect of HMW-HA in peritonitis sepsis cannot be discarded based on the results of the present study.
  •  
3.
  • Broberg, Ellen, et al. (författare)
  • Releasing high positive end-expiratory pressure to a low level generates a pronounced increase in particle flow from the airways
  • 2023
  • Ingår i: Intensive Care Medicine Experimental. - : Springer Science and Business Media LLC. - 2197-425X. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Detecting particle flow from the airways by a non-invasive analyzing technique might serve as an additional tool to monitor mechanical ventilation. In the present study, we used a customized particles in exhaled air (PExA) technique, which is an optical particle counter for the monitoring of particle flow in exhaled air. We studied particle flow while increasing and releasing positive end-expiratory pressure (PEEP). The aim of this study was to investigate the impact of different levels of PEEP on particle flow in exhaled air in an experimental setting. We hypothesized that gradually increasing PEEP will reduce the particle flow from the airways and releasing PEEP from a high level to a low level will result in increased particle flow. Methods: Five fully anesthetized domestic pigs received a gradual increase of PEEP from 5 cmH2O to a maximum of 25 cmH2O during volume-controlled ventilation. The particle count along with vital parameters and ventilator settings were collected continuously and measurements were taken after every increase in PEEP. The particle sizes measured were between 0.41 µm and 4.55 µm. Results: A significant increase in particle count was seen going from all levels of PEEP to release of PEEP. At a PEEP level of 15 cmH2O, there was a median particle count of 282 (154–710) compared to release of PEEP to a level of 5 cmH2O which led to a median particle count of 3754 (2437–10,606) (p < 0.009). A decrease in blood pressure was seen from baseline to all levels of PEEP and significantly so at a PEEP level of 20 cmH2O. Conclusions: In the present study, a significant increase in particle count was seen on releasing PEEP back to baseline compared to all levels of PEEP, while no changes were seen when gradually increasing PEEP. These findings further explore the significance of changes in particle flow and their part in pathophysiological processes within the lung.
  •  
4.
  • Cronin, John N., et al. (författare)
  • Intra-tidal PaO2 oscillations associated with mechanical ventilation : a pilot study to identify discrete morphologies in a porcine model
  • 2023
  • Ingår i: Intensive Care Medicine Experimental. - : Springer Nature. - 2197-425X. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Within-breath oscillations in arterial oxygen tension (PaO2) can be detected using fast responding intra-arterial oxygen sensors in animal models. These PaO2 signals, which rise in inspiration and fall in expiration, may represent cyclical recruitment/derecruitment and, therefore, a potential clinical monitor to allow titration of ventilator settings in lung injury. However, in hypovolaemia models, these oscillations have the potential to become inverted, such that they decline, rather than rise, in inspiration. This inversion suggests multiple aetiologies may underlie these oscillations. A correct interpretation of the various PaO2 oscillation morphologies is essential to translate this signal into a monitoring tool for clinical practice. We present a pilot study to demonstrate the feasibility of a new analysis method to identify these morphologies.Methods Seven domestic pigs (average weight 31.1 kg) were studied under general anaesthesia with muscle relaxation and mechanical ventilation. Three underwent saline-lavage lung injury and four were uninjured. Variations in PEEP, tidal volume and presence/absence of lung injury were used to induce different morphologies of PaO2 oscillation. Functional principal component analysis and k-means clustering were employed to separate PaO2 oscillations into distinct morphologies, and the cardiorespiratory physiology associated with these PaO2 morphologies was compared.Results PaO2 oscillations from 73 ventilatory conditions were included. Five functional principal components were sufficient to explain = 95% of the variance of the recorded PaO2 signals. From these, five unique morphologies of PaO2 oscillation were identified, ranging from those which increased in inspiration and decreased in expiration, through to those which decreased in inspiration and increased in expiration. This progression was associated with the estimates of the first functional principal component (P < 0.001, R-2 = 0.88). Intermediate morphologies demonstrated waveforms with two peaks and troughs per breath. The progression towards inverted oscillations was associated with increased pulse pressure variation (P = 0.03).Conclusions Functional principal component analysis and k-means clustering are appropriate to identify unique morphologies of PaO2 waveform associated with distinct cardiorespiratory physiology. We demonstrated novel intermediate morphologies of PaO2 waveform, which may represent a development of zone 2 physiologies within the lung. Future studies of PaO2 oscillations and modelling should aim to understand the aetiologies of these morphologies.
  •  
5.
  •  
6.
  • Froese, Logan, et al. (författare)
  • The impact of sedative and vasopressor agents on cerebrovascular reactivity in severe traumatic brain injury
  • 2023
  • Ingår i: Intensive Care Medicine Experimental. - : Springer. - 2197-425X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The aim of this study is to evaluate the impact of commonly administered sedatives (Propofol, Alfentanil, Fentanyl, and Midazolam) and vasopressor (Dobutamine, Ephedrine, Noradrenaline and Vasopressin) agents on cerebrovascular reactivity in moderate/severe TBI patients. Cerebrovascular reactivity, as a surrogate for cerebral autoregulation was assessed using the long pressure reactivity index (LPRx). We evaluated the data in two phases, first we assessed the minute-by-minute data relationships between different dosing amounts of continuous infusion agents and physiological variables using boxplots, multiple linear regression and ANOVA. Next, we assessed the relationship between continuous/bolus infusion agents and physiological variables, assessing pre-/post- dose of medication change in physiology using a Wilcoxon signed-ranked test. Finally, we evaluated sub-groups of data for each individual dose change per medication, focusing on key physiological thresholds and demographics.Results: Of the 475 patients with an average stay of 10 days resulting in over 3000 days of recorded information 367 (77.3%) were male with a median Glasgow coma score of 7 (4-9). The results of this retrospective observational study confirmed that the infusion of most administered agents do not impact cerebrovascular reactivity, which is confirmed by the multiple linear regression components having p value > 0.05. Incremental dose changes or bolus doses in these medications in general do not lead to significant changes in cerebrovascular reactivity (confirm by Wilcoxon signed-ranked p value > 0.05 for nearly all assessed relationships). Within the sub-group analysis that separated the data based on LPRx pre-dose, a significance between pre-/post-drug change in LPRx was seen, however this may be more of a result from patient state than drug impact.Conclusions: Overall, this study indicates that commonly administered agents with incremental dosing changes have no clinically significant influence on cerebrovascular reactivity in TBI (nor do they impair cerebrovascular reactivity). Though further investigation in a larger and more diverse TBI patient population is required.
  •  
7.
  •  
8.
  • Hurtsén, Anna Stene, 1992-, et al. (författare)
  • A randomized porcine study of hemorrhagic shock comparing end-tidal carbon dioxide targeted and proximal systolic blood pressure targeted partial resuscitative endovascular balloon occlusion of the aorta in the mitigation of metabolic injury
  • 2023
  • Ingår i: Intensive Care Medicine Experimental. - : Springer. - 2197-425X. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The definition of partial resuscitative endovascular balloon occlusion of the aorta (pREBOA) is not yet determined and clinical markers of the degree of occlusion, metabolic effects and end-organ injury that are clinically monitored in real time are lacking. The aim of the study was to test the hypothesis that end-tidal carbon dioxide (ETCO2) targeted pREBOA causes less metabolic disturbance compared to proximal systolic blood pressure (SBP) targeted pREBOA in a porcine model of hemorrhagic shock.MATERIALS AND METHODS: Twenty anesthetized pigs (26-35 kg) were randomized to 45 min of either ETCO2 targeted pREBOA (pREBOAETCO2, ETCO2 90-110% of values before start of occlusion, n = 10) or proximal SBP targeted pREBOA (pREBOASBP, SBP 80-100 mmHg, n = 10), during controlled grade IV hemorrhagic shock. Autotransfusion and reperfusion over 3 h followed. Hemodynamic and respiratory parameters, blood samples and jejunal specimens were analyzed.RESULTS: ETCO2 was significantly higher in the pREBOAETCO2 group during the occlusion compared to the pREBOASBP group, whereas SBP, femoral arterial mean pressure and abdominal aortic blood flow were similar. During reperfusion, arterial and mesenteric lactate, plasma creatinine and plasma troponin concentrations were higher in the pREBOASBP group.CONCLUSIONS: In a porcine model of hemorrhagic shock, ETCO2 targeted pREBOA caused less metabolic disturbance and end-organ damage compared to proximal SBP targeted pREBOA, with no disadvantageous hemodynamic impact. End-tidal CO2 should be investigated in clinical studies as a complementary clinical tool for mitigating ischemic-reperfusion injury when using pREBOA.
  •  
9.
  • Johnsson, Patrik, et al. (författare)
  • Plasma bioactive adrenomedullin on intensive care unit admission is associated with acute respiratory distress syndrome : an observational study
  • 2023
  • Ingår i: Intensive Care Medicine Experimental. - : Springer Science and Business Media LLC. - 2197-425X. ; 11, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Bioactive adrenomedullin (bio-ADM) is a vasoactive peptide with a key role in reducing vascular hyperpermeability and improving endothelial stability during infection, but it also has vasodilatory properties. Bioactive ADM has not been studied in conjunction with acute respiratory distress syndrome (ARDS), but it has recently been shown to correlate with outcomes after severe COVID-19. Therefore, this study investigated the association between circulating bio-ADM on intensive care unit (ICU) admission and ARDS. The secondary aim was the association between bio-ADM and ARDS mortality. Methods: We analysed bio-ADM levels and assessed the presence of ARDS in adult patients admitted to two general intensive care units in southern Sweden. Medical records were manually screened for the ARDS Berlin criteria. The association between bio-ADM levels and ARDS and mortality in ARDS patients was analysed using logistic regression and receiver-operating characteristics analysis. The primary outcome was an ARDS diagnosis within 72 h of ICU admission, and the secondary outcome was 30-day mortality. Results: Out of 1224 admissions, 11% (n = 132) developed ARDS within 72 h. We found that elevated admission bio-ADM level was associated with ARDS independently of sepsis status and of organ dysfunction as measured by the Sequential organ failure assessment (SOFA) score. Both lower levels (< 38 pg/L) and high (> 90 pg/L) levels of bio-ADM were independently (of the Simplified acute physiology score, SAPS-3) predictive of mortality. Patients with indirect mechanisms of lung injury had higher bio-ADM levels than those with a direct mechanism of injury, and bio-ADM increased with increasing ARDS severity. Conclusions: High levels of bio-ADM on admission are associated with ARDS, and bio-ADM levels significantly differ depending on the injury mechanism. In contrast, both high and low levels of bio-ADM are associated with mortality, possibly due to the dual action of bio-ADM in stabilising the endothelial barrier and causing vasodilation. These findings could lead to improved diagnostic accuracy of ARDS and potentially lead to new therapeutic strategies.
  •  
10.
  • Jörg, Matthias, et al. (författare)
  • Agreement of pCO2 in venous to arterial blood gas conversion models in undifferentiated emergency patients
  • 2023
  • Ingår i: Intensive Care Medicine Experimental. - : SPRINGER. - 2197-425X. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Venous blood gas sampling has replaced arterial sampling in many critically ill patients, though interpretation of venous pCO(2) still remains a challenge. Lemoel et al., Farkas and Zeserson et al. have proposed models to estimate arterial pCO(2) based on venous pCO(2). Our objective was to externally validate these models with a new dataset. This was a prospective cross-sectional study of consecutive adult patients with a clinical indication for blood gas analysis in an academic emergency department in Sweden. Agreement of pairs was reported as mean difference with limits of agreement (LoA). Vital signs and lead times were recorded.Results Two hundred and fifty blood gas pairs were collected consecutively between October 2021 and April 2022, 243 valid pairs were used in the final analysis [mean age 72.8 years (SD 17.8), 47% females]. Respiratory distress was the most common clinical indication (84% of all cases). The model of Farkas showed the best metrics with a mean difference between estimated and arterial pCO(2) of - 0.11 mmHg (95% LoA - 6.86, + 6.63). For Lemo & euml;l the difference was 2.57 mmHg (95% LoA - 5.65, + 10.8), Zeserson 2.55 mmHg (95% LoA - 7.43, + 12.53). All three models showed a decrease in precision in patients with ongoing supplemental oxygen therapy.Conclusion Arterial pCO(2) may be accurately estimated in most patients based on venous blood gas samples. Additional consideration is required in patients with hypo- or hypercapnia or oxygen therapy. Thus, conversion of venous pCO(2) may be considered as an alternative to arterial blood gas sampling with the model of Farkas being the most accurate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy