SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2267 1242 srt2:(2017)"

Sökning: L773:2267 1242 > (2017)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Filcenco-Olteanu, Antoneta, et al. (författare)
  • Physical chemical characterization of historical mining waste and ARD prediction tests
  • 2017
  • Ingår i: E3S Web of Conferences. - : EDP Sciences. - 2267-1242. ; 18:4
  • Tidskriftsartikel (refereegranskat)abstract
    • There are thousands of historical mine tailings and metallurgical residues present on inactive metal mining sites which have been abandoned. However, the potential release of dissolved metals, acidity, or suspended particulates from mine-waste dumps can be a serious and long-lasting problem. A variety of environmental impacts may occur at this abandoned mine sites and leading the list is acid generation, which is one of the main problems from metal mining. The objective of the present study was to characterize and evaluate the Romanian historical tailing of Sasar-Red Valley, near Baia Mare. This involved physical and chemical characterization of the materials and its acid generating potential. Sasar tailing impoundment contains 8.5 million m3 of tailings and occupies an area of 32.5 hectares. Tailings samples were collected from different depths in three sampling points, and characterized by grain size, chemical elements concentration, elements distribution of elements in depth, paste pH, acid-base account and net acid generation tests. Acid base accounting (ABA) tests in conjunction with net acid generation (NAG) tests classified the samples into the category of 'potentially acid generating'. This paper presents a synthesis of works performed in the Improve Resource Efficiency and Minimize Environmental Footprint (REMinE) project.
  •  
2.
  • Salman, Chaudhary Awais, et al. (författare)
  • Process simulation and comparison of biological conversion of syngas and hydrogen in biogas plants
  • 2017
  • Ingår i: International Conference on Advances In Energy Systems And Environmental Engineering (ASEE17). - : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • Organic waste is a good source of clean energy. However, different fractions of waste have to be utilized efficiently. One way is to find pathways to convert waste into useful products via various available processes (gasification, pyrolysis anaerobic digestion, etc.) and integrate them to increase the combined efficiency of the process. The syngas and hydrogen produced from the thermal conversion of biomass can be upgraded to biomethane via biological methanation. The current study presents the simulation model to predict the amount of biomethane produced by injecting the hydrogen and syngas. Hydrogen injection is modelled both in-situ and ex-situ while for syngas solely the ex-situ case has been studied. The results showed that 85% of the hydrogen conversion was achieved for the ex-situ reactor while 81% conversion rate was achieved for the in-situ reactor. The syngas could be converted completely in the bio-reactor. However, the addition of syngas resulted in an increase of carbon dioxide. Simulation of biomethanation of gas addition showed a biomethane concentration of 87% while for hydrogen addition an increase of 74% and 80% for in-situ and ex-situ addition respectively.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy