SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2296 424X srt2:(2020)"

Sökning: L773:2296 424X > (2020)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brzozowska, Beata, et al. (författare)
  • Monte Carlo Modeling of DNA Lesions and Chromosomal Aberrations Induced by Mixed Beams of Alpha Particles and X-Rays
  • 2020
  • Ingår i: Frontiers in Physics. - : Frontiers Media SA. - 2296-424X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Prediction of health risks associated with exposure to mixed beams of high- and low-linear energy transfer ionizing radiation is based on the assumption that the biological effect caused by mixed radiation equals the sum of effects resulting from the action of individual beam components. Experimental studies have demonstrated that the cellular effects in cells exposed to mixed radiations are higher than that calculated based on the assumption of additivity. The present work contains a comparative analysis of published results on chromosomal aberrations in human peripheral blood lymphocytes exposed to mixed beams of alpha particles and X-rays with computer simulations using the PARTRAC program based on Monte Carlo methods. PARTRAC was used to calculate the levels of DNA single-strand breaks (SSB) and double-strand breaks (DSB—both complex and simple) and the level of chromosomal aberrations. SSB and DSB yields were found to be additive. A synergistic effect was obtained at the level of chromosomal aberrations, being in good agreement with the experimental results. This result demonstrates that the synergistic action of mixed beams results from processing of SSB and DSB and not from their initial frequencies. The level of synergy was dependent on the composition of the mixed beam, with highest level at 50:50 ratio of alpha particles and X-rays.
  •  
2.
  • Dai, Lei, et al. (författare)
  • AME : A Cross-Scale Constellation of CubeSats to Explore Magnetic Reconnection in the Solar-Terrestrial Relation
  • 2020
  • Ingår i: Frontiers in Physics. - : Frontiers Media SA. - 2296-424X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • A major subset of solar-terrestrial relations, responsible, in particular, for the driver of space weather phenomena, is the interaction between the Earth's magnetosphere and the solar wind. As one of the most important modes of the solar-wind-magnetosphere interaction, magnetic reconnection regulates the energy transport and energy release in the solar-terrestrial relation. In situ measurements in the near-Earth space are crucial for understanding magnetic reconnection. Past and existing spacecraft constellation missions mainly focus on the measurement of reconnection on plasma kinetic-scales. Resolving the macro-scale and cross-scale aspects of magnetic reconnection is necessary for accurate assessment and predictions of its role in the context of space weather. Here, we propose the AME (self-Adaptive Magnetic reconnection Explorer) mission consisting of a cross-scale constellation of 12+ CubeSats and one mother satellite. Each CubeSat is equipped with instruments to measure magnetic fields and thermal plasma particles. With multiple CubeSats, the AME constellation is intended to make simultaneous measurements at multiple scales, capable of exploring cross-scale plasma processes ranging from kinetic scale to macro scale.
  •  
3.
  • Ekström, Andreas, 1980 (författare)
  • Analyzing the Nuclear Interaction: Challenges and New Ideas
  • 2020
  • Ingår i: Frontiers in Physics. - : Frontiers Media SA. - 2296-424X. ; 8
  • Forskningsöversikt (refereegranskat)abstract
    • This review presents some of the challenges in constructing models of atomic nuclei starting from theoretical descriptions of the strong interaction between nucleons. The focus is on statistical computing and methods for analyzing the link between bulk properties of atomic nuclei, such as radii and binding energies, and the underlying microscopic description of the nuclear interaction. The importance of careful model calibration and uncertainty quantification of theoretical predictions is highlighted.
  •  
4.
  • Henthorn, Nicholas T., et al. (författare)
  • Mapping the Future of Particle Radiobiology in Europe : The INSPIRE Project
  • 2020
  • Ingår i: Frontiers in Physics. - : Frontiers Media SA. - 2296-424X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Particle therapy is a growing cancer treatment modality worldwide. However, there still remains a number of unanswered questions considering differences in the biological response between particles and photons. These questions, and probing of biological mechanisms in general, necessitate experimental investigation. The "Infrastructure in Proton International Research" (INSPIRE) project was created to provide an infrastructure for European research, unify research efforts on the topic of proton and ion therapy across Europe, and to facilitate the sharing of information and resources. This work highlights the radiobiological capabilities of the INSPIRE partners, providing details of physics (available particle types and energies), biology (sample preparation and post-irradiation analysis), and researcher access (the process of applying for beam time). The collection of information reported here is designed to provide researchers both in Europe and worldwide with the tools required to select the optimal center for their research needs. We also highlight areas of redundancy in capabilities and suggest areas for future investment.
  •  
5.
  •  
6.
  • Norbury, John W., et al. (författare)
  • Are Further Cross Section Measurements Necessary for Space Radiation Protection or Ion Therapy Applications? Helium Projectiles
  • 2020
  • Ingår i: Frontiers in Physics. - : Frontiers Media SA. - 2296-424X. ; 8
  • Forskningsöversikt (refereegranskat)abstract
    • The helium ((Formula presented.) He) component of the primary particles in the galactic cosmic ray spectrum makes significant contributions to the total astronaut radiation exposure. (Formula presented.) He ions are also desirable for direct applications in ion therapy. They contribute smaller projectile fragmentation than carbon ((Formula presented.) C) ions and smaller lateral beam spreading than protons. Space radiation protection and ion therapy applications need reliable nuclear reaction models and transport codes for energetic particles in matter. Neutrons and light ions ((Formula presented.) H, (Formula presented.) H, (Formula presented.) H, (Formula presented.) He, and (Formula presented.) He) are the most important secondary particles produced in space radiation and ion therapy nuclear reactions; these particles penetrate deeply and make large contributions to dose equivalent. Since neutrons and light ions may scatter at large angles, double differential cross sections are required by transport codes that propagate radiation fields through radiation shielding and human tissue. This work will review the importance of (Formula presented.) He projectiles to space radiation and ion therapy, and outline the present status of neutron and light ion production cross section measurements and modeling, with recommendations for future needs.
  •  
7.
  • Printz Ringbaek, Toke, et al. (författare)
  • Calculation of the Beam-Modulation Effect of the Lung in Carbon Ion and Proton Therapy With Deterministic Pencil Beam Algorithms
  • 2020
  • Ingår i: Frontiers in Physics. - : Frontiers Media SA. - 2296-424X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Ion beams passing through lung tissue show more pronounced energy straggling than expected for solid materials of the same thickness. Energy straggling in active scanning particle therapy can enlarge the pencil beam Bragg peaks in-depth as well as displace them, deteriorating the dose coverage of a target within the lung. While this is not yet considered in any known treatment planning system, we implement a mathematical model to be used for treatment planning, using TRiP98, which relies on a deterministic pencil beam algorithm. Through a randomization process based on a continuous Poisson probability distribution, the HU values of lung voxels are replaced with a modified value in successive iterations. The beam-modulation effect of the lung can thus be taken into account in treatment planning by recalculating the dose n times for n randomized CTs using the raster scan file of a plan that was optimized on the nonmodulated CT. The evaluation follows by averaging the resulting n dose distributions and comparing to the corresponding nonmodulated dose distribution, attending at dosimetric indices and dose-volume histograms. In this work, the functionality of these routines was tested for proton and carbon ion plans for two selected lung cancer patient cases with deep-seated tumors, showing that, with existing standard tools, it is possible to calculate the beam-modulation effect of the lung in TRiP98 in a transparent way. Variable model parameters, such as modulation power, voxel size and density voxel selection range, were evaluated. Furthermore, a systematic study for spherical geometries in a lung tissue CT cube is presented to investigate general trends.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy