SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2310 2861 srt2:(2023)"

Sökning: L773:2310 2861 > (2023)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alakpa, Enateri V., et al. (författare)
  • Bioprinted schwann and mesenchymal stem cell co-cultures for enhanced spatial control of neurite outgrowth
  • 2023
  • Ingår i: Gels. - : MDPI. - 2310-2861. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Bioprinting nerve conduits supplemented with glial or stem cells is a promising approach to promote axonal regeneration in the injured nervous system. In this study, we examined the effects of different compositions of bioprinted fibrin hydrogels supplemented with Schwann cells and mesenchymal stem cells (MSCs) on cell viability, production of neurotrophic factors, and neurite outgrowth from adult sensory neurons. To reduce cell damage during bioprinting, we analyzed and optimized the shear stress magnitude and exposure time. The results demonstrated that fibrin hydrogel made from 9 mg/mL of fibrinogen and 50IE/mL of thrombin maintained the gel’s highest stability and cell viability. Gene transcription levels for neurotrophic factors were significantly higher in cultures containing Schwann cells. However, the amount of the secreted neurotrophic factors was similar in all co-cultures with the different ratios of Schwann cells and MSCs. By testing various co-culture combinations, we found that the number of Schwann cells can feasibly be reduced by half and still stimulate guided neurite outgrowth in a 3D-printed fibrin matrix. This study demonstrates that bioprinting can be used to develop nerve conduits with optimized cell compositions to guide axonal regeneration.
  •  
2.
  • Moharramzadeh, Fereshteh, et al. (författare)
  • Synthesis and Characterization of Hydrogel Droplets Containing Magnetic Nano Particles, in a Microfluidic Flow-Focusing Chip
  • 2023
  • Ingår i: Gels. - : MDPI AG. - 2310-2861. ; 9:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic hybrid hydrogels have exhibited remarkable efficacy in various areas, particularly in the biomedical sciences, where these inventive substances exhibit intriguing prospects for controlled drug delivery, tissue engineering, magnetic separation, MRI contrast agents, hyperthermia, and thermal ablation. Additionally, droplet-based microfluidic technology enables the fabrication of microgels possessing monodisperse characteristics and controlled morphological shapes. Here, alginate microgels containing citrated magnetic nanoparticles (MNPs) were produced by a microfluidic flow-focusing system. Superparamagnetic magnetite nanoparticles with an average size of 29.1 & PLUSMN; 2.5 nm and saturation magnetization of 66.92 emu/g were synthesized via the co-precipitation method. The hydrodynamic size of MNPs was changed from 142 nm to 826.7 nm after the citrate group's attachment led to an increase in dispersion and the stability of the aqueous phase. A microfluidic flow-focusing chip was designed, and the mold was 3D printed by stereo lithographic technology. Depending on inlet fluid rates, monodisperse and polydisperse microgels in the range of 20-120 & mu;m were produced. Different conditions of droplet generation in the microfluidic device (break-up) were discussed considering the model of rate-of-flow-controlled-breakup (squeezing). Practically, this study indicates guidelines for generating droplets with a predetermined size and polydispersity from liquids with well-defined macroscopic properties, utilizing a microfluidic flow-focusing device (MFFD). Fourier transform infrared spectrometer (FT-IR) results indicated a chemical attachment of citrate groups on MNPs and the existence of MNPs in the hydrogels. Magnetic hydrogel proliferation assay after 72 h showed a better rate of cell growth in comparison to the control group (p = 0.042).
  •  
3.
  • Oskarsdotter, Kristin, 1995, et al. (författare)
  • Injectable In Situ Crosslinking Hydrogel for Autologous Fat Grafting
  • 2023
  • Ingår i: Gels. - 2310-2861. ; 9:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Autologous fat grafting is hampered by unpredictable outcomes due to high tissue resorption. Hydrogels based on enzymatically pretreated tunicate nanocellulose (ETC) and alginate (ALG) are biocompatible, safe, and present physiochemical properties capable of promoting cell survival. Here, we compared in situ and ex situ crosslinking of ETC/ALG hydrogels combined with lipoaspirate human adipose tissue (LAT) to generate an injectable formulation capable of retaining dimensional stability in vivo. We performed in situ crosslinking using two different approaches; inducing Ca2+ release from CaCO3 microparticles (CMPs) and physiologically available Ca2+ in vivo. Additionally, we generated ex situ-crosslinked, 3D-bioprinted hydrogel-fat grafts. We found that in vitro optimization generated a CMP-crosslinking system with comparable stiffness to ex situ-crosslinked gels. Comparison of outcomes following in vivo injection of each respective crosslinked hydrogel revealed that after 30 days, in situ crosslinking generated fat grafts with less shape retention than 3D-bioprinted constructs that had undergone ex situ crosslinking. However, CMP addition improved fat-cell distribution and cell survival relative to grafts dependent on physiological Ca2+ alone. These findings suggested that in situ crosslinking using CMP might promote the dimensional stability of injectable fat-hydrogel grafts, although 3D bioprinting with ex situ crosslinking more effectively ensured proper shape stability in vivo.
  •  
4.
  • Sevcik, Aleksandras, et al. (författare)
  • Radiation-Driven Polymerisation of Methacrylic Acid in Aqueous Solution : A Chemical Events Monte Carlo Study
  • 2023
  • Ingår i: Gels. - : MDPI AG. - 2310-2861. ; 9:12
  • Tidskriftsartikel (refereegranskat)abstract
    • This study employed a coarse-grained Monte Carlo (MC) simulation to investigate the radiation-induced polymerisation of methacrylic acid (MAA) in an aqueous solution. This method provides an alternative to traditional kinetic models, enabling a detailed examination of the micro-structure and growth patterns of MAA polymers, which are often not captured in other approaches. In this work, we generated multiple clones of a simulation box, each containing a specific chemical composition. In these simulations, every coarse-grained (CG) bead represents an entire monomer. The growth function, defined by the chemical behaviour of interacting substances, was determined through repeated random sampling. This approach allowed us to simulate the complex process of radiation-induced polymerisation, enhancing our understanding of the formation of poly(methacrylic acid) hydrogels at a microscopic level; while Monte Carlo simulations have been applied in various contexts of polymerisation, this study’s specific approach to modelling the radiation-induced polymerisation of MAA in an aqueous environment, utilising the data obtained by quantum chemistry modelling, with an emphasis on micro-structural growth, has not been extensively explored in existing studies. This understanding is important for advancing the synthesis of these hydrogels, which have potential applications in diverse fields such as materials science and medicine.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy