SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2366 7486 srt2:(2018)"

Sökning: L773:2366 7486 > (2018)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Che, Canyan, et al. (författare)
  • Conducting Polymer Electrocatalysts for Proton-Coupled Electron Transfer Reactions: Toward Organic Fuel Cells with Forest Fuels
  • 2018
  • Ingår i: Advanced Sustainable Systems. - : Wiley-Blackwell. - 2366-7486. ; 317
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignin is one of the most abundant biopolymers, constituting 25% of plants. The pulp and paper industries extract lignin in their process and today seek new applications for this by-product. Here, it is reported that the aromatic alcohols obtained from lignin depolymerization can be used as fuel in high power density electrical power sources. This study shows that the conducting polymer poly(3,4-ethylenedioxythiophene), fabricated from abundant ele-ments via low temperature synthesis, enables efficient, direct, and reversible chemical-to-electrical energy conversion of aromatic alcohols such as lignin residues in aqueous media. A material operation principle related to the rela-tively high molecular diffusion and ionic conductivity within the conducting polymer matrix, ensuring efficient uptake of protons in the course of proton-coupled electron transfers between organic molecules is proposed.
  •  
2.
  • Gavilà, Llorenç, et al. (författare)
  • Lactic acid production from renewable feedstock : fractionation, hydrolysis, and fermentation
  • 2018
  • Ingår i: Advanced Sustainable Systems. - : Wiley. - 2366-7486. ; 2:3
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, an integrated fractionation with a switchable ionic liquid (SIL), pulp hydrolysis, and lactic acid fermentation is carried out. For this, SO2-swithced SIL is used for fractionation of sugar cane (Saccharum officinarum) bagasse and giant cane (Arundo donax, AD). SIL is able to extract ≈2/3 of lignin when relatively large wood chips (≈4 mm) are used without any mechanical agitation and just 1 h of treatment time for AD. Furthermore, SIL reuse is successfully demonstrated for four runs. Subsequently, the produced pulps are hydrolyzed within 15 min in a microwave reactor, producing a glucose rich hydrolysates. Finally, these hydrolysates are used as a carbohydrate source for Lactobacillus delbrueckii fermentation, which selectively transform all glucose present into optically pure D-lactic acid. Hence, the whole chain for lactic acid production from biomass is successfully demonstrated.
  •  
3.
  • Jiao, Fei, et al. (författare)
  • Nanofibrillated Cellulose-Based Electrolyte and Electrode for Paper-Based Supercapacitors
  • 2018
  • Ingår i: ADVANCED SUSTAINABLE SYSTEMS. - : Wiley. - 2366-7486. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar photovoltaic technologies could fully deploy and impact the energy conversion systems in our society if mass-produced energy-storage solutions exist. A supercapacitor can regulate the fluctuations on the electrical grid on short time scales. Their mass-implementation requires the use of abundant materials, biological and organic synthetic materials are attractive because of atomic element abundancy and low-temperature synthetic processes. Nanofibrillated cellulose (NFC) coming from the forest industry is exploited as a three-dimensional template to control the transport of ions in an electrolyte-separator, with nanochannels filled of aqueous electrolyte. The nanochannels are defined by voids in the nanocomposite made of NFC and the proton transporting polymer polystyrene sulfonic acid PSSH. The ionic conductivity of NFC-PSSH composites (0.2 S cm(-1) at 100% relative humidity) exceeds sea water in a material that is solid, feel dry to the finger, but filled of nanodomains of water. A paper-based supercapacitor made of NFC-PSSH electrolyte-separator sandwiched between two paper-based electrodes is demonstrated. Although modest specific capacitance (81.3 F g(-1)), power density (2040 W kg(-1)) and energy density (1016 Wh kg(-1)), this is the first conceptual demonstration of a supercapacitor based on cellulose in each part of the device; which motivates the search for using paper manufacturing as mass-production of energy-storage devices.
  •  
4.
  • Xu, Chao, et al. (författare)
  • High-Performance Activated Carbons Synthesized from Nanocellulose for CO2 Capture and Extremely Selective Removal of Volatile Organic Compounds
  • 2018
  • Ingår i: Advanced Sustainable Systems. - : Wiley. - 2366-7486. ; 2:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of sustainable activated carbons (ACs) with large surface areas and tunable pore sizes is synthesized from Cladophora cellulose and its chemically modified derivatives in a one-step physical carbonization/activation process. The molecular structure of the cellulose precursors and the carbonization/activation atmosphere (N-2 or CO2) significantly influence the pore structure of the ACs. When using oxidized cellulose and its further cross-linkages as the precursor, the ACs have a large volume of ultramicropores (pore diameter < 0.8 nm). Activation in CO2 results in ACs with surface areas up to 1241 m(2) g(-1). These ACs have a high CO2 uptake capacity (2.29 mmol g(-1) at 0.15 bar, 5.52 mmol g(-1) at 1 bar; 273 K) and a high CO2-over-N-2 selectivity (42 at 273 K). In addition, the capacity of the ACs to adsorb vapors of volatile organic compounds (VOCs) is remarkable, with values up to 0.97 mmol g(-1) at very low VOC concentrations (200 ppmv). The ACs have ultrahigh VOCs-over-N-2 selectivity up to 9.35 x 10(3) at 293 K for 0.02 vol%/99.8 vol% of benzene/N-2 mixture. It is anticipated that these ACs will be useful as sorbents for the postcombustion capture of CO2 and for indoor removal and direct air capture of various VOCs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy