SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2367 7163 srt2:(2016)"

Sökning: L773:2367 7163 > (2016)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Angeler, David (författare)
  • Deathcore, creativity and scientific thinking.
  • 2016
  • Ingår i: Research Ideas and Outcomes. - : Pensoft Publishers. - 2367-7163. ; 2, s. 2-6
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Major scientific breakthroughs are generally the result of materializing creative ideas, the result of an inductive process that sometimes spontaneously and unexpectedly generates a link between thoughts and/or objects that did not exist before. Creativity is the cornerstone of scientific thinking, but scientists in academia are judged by metrics of quantification that often leave little room for creative thinking. In many scientific fields, reductionist approaches are rewarded and new ideas viewed skeptically. As a result, scientific inquiry is often confined to narrow but safe disciplinary ivory towers, effectively preventing profoundly creative explorations that could yield unexpected benefits. New information This paper argues how apparently unrelated fields specifically music and belief systems can be combined in a provocative allegory to provide novel perspectives regarding patterns in nature, thereby potentially inspiring innovation in the natural, social and other sciences. The merger between basic human tensions such as those embodied by religion and music, for example the heavy metal genre of deathcore, may be perceived as controversial, challenging, and uncomfortable. However, it is an example of moving the thinking process out of unconsciously established comfort zones, through the connection of apparently unrelated entities. We argue that music, as an auditory art form, has the potential to enlighten and boost creative thinking in science. Metal, as a fast evolving and diversifying extreme form of musical art, may be particularly suitable to trigger surprising associations in scientific inquiry. This may pave the way for dealing with questions about what we don´t know that we don´t know in a fast-changing planet.
  •  
2.
  • Glover, AG, et al. (författare)
  • The London Workshop on the Biogeography and Connectivity of the Clarion-Clipperton Zone
  • 2016
  • Ingår i: Research Ideas and Outcomes. - : Pensoft Publishers. - 2367-7163. ; 2
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Background Recent years have seen a rapid increase in survey and sampling expeditions to the Clarion-Clipperton Zone (CCZ) abyssal plain, a vast area of the central Pacific that is currently being actively explored for deep-sea minerals (ISA, 2016). Critical to the development of evidence-based environmental policy in the CCZ are data on the biogeography and connectivity of species at a CCZ-regional level. New information The London Workshop on the Biogeography and Connectivity of the CCZ was convened to support the integration and synthesis of data from European Union (EU) CCZ projects, supported by the EU Managing Impacts of Deep-Sea Resource Exploitation (MIDAS) and EU Joint Programming Initiative Healthy and Productive Seas and Oceans (JPI Oceans) projects. The London Workshop had three clear goals: (1) To explore, review and synthesise the latest molecular biogeography and connectivity data from across recent CCZ cruises from both contractor and academia-funded projects; (2) To develop complementary and collaborative institutional and program-based academic publication plans to avoid duplication of effort and ensure maximum collaborative impact; (3) To plan a joint synthetic data publication highlighting key results from a range of planned molecular biogeography/connectivity publications. 32 participants attended the workshop at the Natural History Museum in London from 10-12 May 2016. Presentations and discussions are summarised in this report covering (1) overviews of current CCZ environmental projects, (2) policy and industry perspectives, (3) synthesis of DNA taxonomy and biogeography studies, (4) summaries of the latest population genetic studies, (5) summaries of the latest broader morphological context, (6) an overview of publication and proposal plans to maximise collaborative opportunities and finally a series of workshop recommendations.
  •  
3.
  • Kahlert, Maria, et al. (författare)
  • DNAqua-Net: developing new genetic tools for bioassessment and monitoring of aquatic ecosystems in Europe
  • 2016
  • Ingår i: Research Ideas and Outcomes. - : Pensoft Publishers. - 2367-7163. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • The protection, preservation and restoration of aquatic ecosystems and their functions are of global importance. For European states it became legally binding mainly through the EUWater Framework Directive (WFD). In order to assess the ecological status of a given water body, aquatic biodiversity data are obtained and compared to a reference water body. The quantified mismatch obtained determines the extent of potential management actions. The current approach to biodiversity assessment is based on morpho-taxonomy. This approach has many drawbacks such as being time consuming, limited in temporal and spatial resolution, and error-prone due to the varying individual taxonomic expertise of the analysts. Novel genomic tools can overcome many of the aforementioned problems and could complement or even replace traditional bioassessment. Yet, a plethora of approaches are independently developed in different institutions, thereby hampering any concerted routine application. The goal of this Action is to nucleate a group of researchers across disciplines with the task to identify gold-standard genomic tools and novel ecogenomic indices for routine application in biodiversity assessments of European fresh- and marine water bodies. Furthermore, DNAqua-Net will provide a platform for training of the next generation of European researchers preparing them for the new technologies. Jointly with water managers, politicians, and other stakeholders, the group will develop a DNAqua-Net: Developing new genetic tools for bioassessment and monitoring conceptual framework for the standard application of eco-genomic tools as part of legally binding assessments.
  •  
4.
  • Koureas, Dimitrios, et al. (författare)
  • Community engagement : The ‘last mile’ challenge for European research e-infrastructures
  • 2016
  • Ingår i: Research Ideas and Outcomes. - : Pensoft Publishers. - 2367-7163. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • Europe is building its Open Science Cloud; a set of robust and interoperable e-infrastructures with the capacity to provide data and computational solutions through cloud-based services. The development and sustainable operation of such e-infrastructures are at the forefront of European funding priorities. The research community, however, is still reluctant to engage at the scale required to signal a Europe-wide change in the mode of operation of scientific practices. The striking differences in uptake rates between researchers from different scientific domains indicate that communities do not equally share the benefits of the above European investments. We highlight the need to support research communities in organically engaging with the European Open Science Cloud through the development of trustworthy and interoperable Virtual Research Environments. These domain-specific solutions can support communities in gradually bridging technical and socio-cultural gaps between traditional and open digital science practice, better diffusing the benefits of European e-infrastructures.
  •  
5.
  • Koureas, Dimitrios, et al. (författare)
  • Unifying European Biodiversity Informatics (Bio Unify)
  • 2016
  • Ingår i: Research Ideas and Outcomes. - : Pensoft Publishers. - 2367-7163. ; 2:e7787, s. 1-23
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to preserve the variety of life on Earth, we must understand it better. Biodiversity research is at a pivotal point with research projects generating data at an ever increasing rate. Structuring, aggregating, linking and processing these data in a meaningful way is a major challenge. The systematic application of information management and engineering technologies in the study of biodiversity (biodiversity informatics) help transform data to knowledge. However, concerted action is required to be taken by existing e-infrastructures to develop and adopt common standards, provisions for interoperability and avoid overlapping in functionality. This would result in the unification of the currently fragmented landscape that restricts European biodiversity research from reaching its full potential. The overarching goal of this COST Action is to coordinate existing research and capacity building efforts, through a bottom-up trans-disciplinary approach, by unifying biodiversity informatics communities across Europe in order to support the long-term vision of modelling biodiversity on earth. BioUnify will: 1. specify technical requirements, evaluate and improve models for efficient data and workflow storage, sharing and re-use, within and between different biodiversity communities; 2. mobilise taxonomic, ecological, genomic and biomonitoring data generated and curated by natural history collections, research networks and remote sensing sources in Europe; 3. leverage results of ongoing biodiversity informatics projects by identifying and developing functional synergies on individual, group and project level; 4. raise technical awareness and transfer skills between biodiversity researchers and information technologists; 5. formulate a viable roadmap for achieving the long-term goals for European biodiversity informatics, which ensures alignment with global activities and translates into efficient biodiversity policy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy