SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2470 1343 srt2:(2019)"

Sökning: L773:2470 1343 > (2019)

  • Resultat 1-10 av 44
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Antonio, Capezza, et al. (författare)
  • Preparation and Comparison of Reduced Graphene Oxide and Carbon Nanotubes as Fillers in Conductive Natural Rubber for Flexible Electronics
  • 2019
  • Ingår i: Omega. - : American Chemical Society (ACS). - 0030-2228 .- 1541-3764. ; 4:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Conductive natural rubber (NR) nanocomposites were prepared by solvent-casting suspensions of reduced graphene oxide(rGO) or carbon nanotubes (CNTs), followed by vulcanization of the rubber composites. Both rGO and CNT were compatible as fillers in the NR as well as having sufficient intrinsic electrical conductivity for functional applications. Physical (thermal) and chemical reduction of GO were investigated, and the results of the reductions were monitored by X-ray photoelectron spectroscopy for establishing a reduction protocol that was useful for the rGO nanocomposite preparation. Field-emission scanning electron microscopy showed that both nanofillers were adequately dispersed in the main NR phase. The CNT composite displays a marked mechanical hysteresis and higher elongation at break, in comparison to the rGO composites for an equal fraction of the carbon phase. Moreover, the composite conductivity was always ca. 3-4 orders of magnitude higher for the CNT composite than for the rGO composites, the former reaching a maximum conductivity of ca. 10.5 S/m, which was explained by the more favorable geometry of the CNT versus the rGO sheets. For low current density applications though, both composites achieved the necessary percolation and showed the electrical conductivity needed for being applied as flexible conductors for a light-emitting diode. 
  •  
2.
  • Arza, Carlos R., et al. (författare)
  • Synthesis, Thermal Properties, and Rheological Characteristics of Indole-Based Aromatic Polyesters
  • 2019
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 4:12, s. 15012-15021
  • Tidskriftsartikel (refereegranskat)abstract
    • Currently, there is an intensive development of bio-based aromatic building blocks to replace fossil-based terephthalates used for poly(ethylene terephthalate) production. Indole is a ubiquitous aromatic unit in nature, which has great potential as a bio-based feedstock for polymers or plastics. In this study, we describe the synthesis and characterization of new indole-based dicarboxylate monomers with only aromatic ester bonds, which can improve the thermal stability and glass-transition temperature (Tg) of the resulting polyesters. The new dicarboxylate monomers were polymerized with five aliphatic diols to yield 10 new polyesters with tunable chemical structures and physical properties. Particularly, the Tg values of the obtained polyesters can be as high as 113 °C, as indicated by differential scanning calorimetry and dynamic mechanical analysis. The polyesters showed decent thermal stability and distinct flow transitions as revealed by thermogravimetric analysis and rheology measurements.
  •  
3.
  • Bashardanesh, Zahedeh, et al. (författare)
  • Rotational and Translational Diffusion of Proteins as a Function of Concentration
  • 2019
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 4:24, s. 20654-20664
  • Tidskriftsartikel (refereegranskat)abstract
    • Atomistic simulations of three different proteins at different concentrations are performed to obtain insight into protein mobility as a function of protein concentration. We report on simulations of proteins from diluted to the physiological water concentration (about 70% of the mass). First, the viscosity was computed and found to increase by a factor of 7-9 going from pure water to the highest protein concentration, in excellent agreement with in vivo nuclear magnetic resonance results. At a physiological concentration of proteins, the translational diffusion is found to be slowed down to about 30% of the in vitro values. The slow-down of diffusion found here using atomistic models is slightly more than that of a hard sphere model that neglects the electrostatic interactions. Interestingly, rotational diffusion of proteins is slowed down somewhat more (by about 80-95% compared to in vitro values) than translational diffusion, in line with experimental findings and consistent with the increased viscosity. The finding that rotation is retarded more than translation is attributed to solvent-separated clustering. No direct interactions between the proteins are found, and the clustering can likely be attributed to dispersion interactions that are stronger between proteins than between protein and water. Based on these simulations, we can also conclude that the internal dynamics of the proteins in our study are affected only marginally under crowding conditions, and the proteins become somewhat more stable at higher concentrations. Simulations were performed using a force field that was tuned for dealing with crowding conditions by strengthening the protein-water interactions. This force field seems to lead to a reproducible partial unfolding of an alpha-helix in one of the proteins, an effect that was not observed in the unmodified force field.
  •  
4.
  • Billinger, Erika, et al. (författare)
  • Characterization of Serine Protease Inhibitor from Solanum tuberosum Conjugated to Soluble Dextran and Particle Carriers
  • 2019
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 4:19, s. 18456-18464
  • Forskningsöversikt (refereegranskat)abstract
    • A serine protease inhibitor was extracted from potato tubers. The inhibitor was conjugated to soluble, prefractionated dextran and titanium dioxide and zinc oxide nanoparticles. Conjugation to dextran was achieved by periodate oxidation of the dextran, followed by Schiff base coupling to inhibitor amino groups, and finally reduction, whereas the conjugation to the oxide particles was carried out by aminosilanization and carbonyldiimidazole activation. The inhibitory effect of the conjugated inhibitor was compared to that of free inhibitor in solution and with gelatin gel as a direct substrate. A certain degree of inhibitory activity was retained for both the dextran-conjugated and particle-conjugated inhibitors. In particular, the apparent Ki value of the dextran-conjugated inhibitor was found to be in the same range as that for free inhibitor. The dextran conjugate retained a higher activity than the free inhibitor after 1 month of storage at room temperature.
  •  
5.
  • Budnyak, Tetyana M., et al. (författare)
  • Electrostatic Deposition of the Oxidized Kraft Lignin onto the Surface of Aminosilicas : Thermal and Structural Characteristics of Hybrid Materials
  • 2019
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 4:27, s. 22530-22539
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, functional polymeric compounds have been widely used to modify the silica surface, which allows one to obtain the corresponding organomineral composites for broad application prospects. In this case, lignin-a cross-linked polyphenolic macromolecule-is of great interest according to its valuable properties and possible surplus as a by-product of pulp and paper industry and various biorefinery processes. Hybrid materials based on kraft softwood lignin and silica were obtained via the electrostatic attraction of oxidized lignin to the aminosilica surface with different porosities, which were prepared by the amination of the commercial silica gel with an average pore diameter of 6 nm, and the silica prepared in the lab with the oxidized kraft lignin and lignin-silica samples with an average pore diameter of 38 nm was investigated by physicochemical methods: two-dimensional nuclear magnetic resonance (NMR), P-31 NMR, Fourier transform infrared spectroscopy, thermogravimetric analysis in nitrogen and air atmosphere, scanning electron microscopy, and adsorption methods. After oxidation, the content of carboxylic groups almost doubled in the oxidized lignin, compared to that in the native one (0.74 mmol/g against 0.44 mmol/g, respectively). The lignin content was deposited onto the surface of aminosilica, depending on the porosity of the silica material and on the content of amino groups on its surface, giving lignin-aminosilica with 20% higher lignin content than the lignin-aminosilica gel. Both types of lignin-silica composites demonstrate a high sorptive capacity toward crystal violet dye. The suggested approach is an easy and low-cost way of synthesis of lignin-silica composites with unique properties. Such composites have a great potential for use as adsorbents in wastewater treatment processes.
  •  
6.
  • Capezza, Antonio Jose, et al. (författare)
  • Superabsorbent and Fully Biobased Protein Foams with a Natural Cross-Linker and Cellulose Nanofibers
  • 2019
  • Ingår i: ACS Omega. - : AMER CHEMICAL SOC. - 2470-1343. ; 4:19, s. 18257-18267
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of fully natural wheat gluten foams showing rapid and high uptake of water, sheep blood, and saline solution, while maintaining high mechanical stability in the swollen state, is presented. Genipin was added as a natural and polar cross-linker to increase the polarity of the protein chains, whereas cellulose nanofibers (CNFs) were added as a reinforcement/stiffener of the foams, alone or in combination with the genipin. The presence of only genipin resulted in a foam that absorbed up to 25 g of water per gram of foam and a more than 15 g uptake in only 8 min. In contrast, with CNF alone, it was not possible to maintain the mechanical stability of the foam during the water uptake and the protein foam disintegrated. The combination of CNF and genipin yielded a material with the best mechanical stability of the tested samples. In the latter case, the foam could be compressed repeatedly more than 80% without displaying any structural damage. The results revealed that a strong network had formed between the wheat gluten matrix, genipin, and cellulose in the foam structure. A unique feature of the absorbent/foam, in contrast to commercial superabsorbents, was that it was able to rapidly absorb nonpolar liquids (here, n-heptane) due to the open-cell structure. The capillary-driven absorption due to the open-cell structure, the high liquid absorption in the cell walls, and the mechanical properties (both in dry and swollen states) of these natural foams make them interesting as a sustainable replacement for a range of petroleum-based foam materials, including absorbent hygiene products such as sanitary pads.
  •  
7.
  • Dahlqvist, Alexander, et al. (författare)
  • C1-Galactopyranosyl Heterocycle Structure Guides Selectivity : Triazoles Prefer Galectin-1 and Oxazoles Prefer Galectin-3
  • 2019
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 4:4, s. 7047-7053
  • Tidskriftsartikel (refereegranskat)abstract
    • Galectins are carbohydrate-recognizing proteins involved in many different pathological processes, including cancer and immune-related disorders. Inhibitors of galectins have evolved from natural oligosaccharides toward more drug-like truncated galactoside scaffolds that only retain key specific interactions of the galactose scaffolds with the galectin carbohydrate recognition domains. In this context, C1-galactosides are attractive and stable scaffolds, and this work reports that the synthesis of novel C1-galactopyranosyl heteroaryl derivatives as galectin inhibitors, in which galectin selectivity is governed by the composition of the heterocycle and affinity, is driven by the structure of the aryl substituent to give compounds selective for either galectin-1 or galectin-3. The affinities are close to or better than those of lactose and other natural galectin-binding disaccharides, selectivities induced by the C1-heteroaryl groups are superior to lactose, and compound hydrolytic stabilities and drug-like properties are potentially better than those of natural saccharides. Hence, C1-galactopyranosyl heteroaryls constitute a class of promising starting scaffolds for galectin inhibition, in which a natural ligand pyranose has been replaced by more than fivefold selectivity-inducing heteroaryl rings leading to affinities of 90 μM toward galectin-3 for a C1-galactopyranosyl naphthyloxazole and 170 μM toward galectin-1 for a C1-galactopyranosyl 2-fluorophenyltriazole.
  •  
8.
  •  
9.
  • Eklof, Daniel, et al. (författare)
  • Mysterious SiB3: Identifying the Relation between alpha- and beta-SiB3
  • 2019
  • Ingår i: ACS Omega. - : AMER CHEMICAL SOC. - 2470-1343. ; 4:20, s. 18741-18759
  • Tidskriftsartikel (refereegranskat)abstract
    • Binary silicon boride SiB3 has been reported to occur in two forms, as disordered and nonstoichiometric alpha-SiB3-x, which relates to the alpha-rhombohedral phase of boron, and as strictly ordered and stoichiometric beta-SiB3. Similar to other boron-rich icosahedral solids, these SiB3 phases represent potentially interesting refractory materials. However, their thermal stability, formation conditions, and thermodynamic relation are poorly understood. Here, we map the formation conditions of alpha-SiB3-x and beta-SiB3 and analyze their relative thermodynamic stabilities. alpha-SiB3-x is metastable (with respect to beta-SiB3 and Si), and its formation is kinetically driven. Pure polycrystalline bulk samples may be obtained within hours when heating stoichiometric mixtures of elemental silicon and boron at temperatures 1200-1300 degrees C. At the same time, alpha-SiB3-x decomposes into SiB6 and Si, and optimum time-temperature synthesis conditions represent a trade-off between rates of formation and decomposition. The formation of stable beta-SiB3 was observed after prolonged treatment (days to weeks) of elemental mixtures with ratios Si/B = 1:11:4 at temperatures 1175-1200 degrees C. The application of high pressures greatly improves the kinetics of SiB3 formation and allows decoupling of SiB3 formation from decomposition. Quantitative formation of beta-SiB3 was seen at 1100 degrees C for samples pressurized to 5.5-8 GPa. beta-SiB3 decomposes peritectoidally at temperatures between 1250 and 1300 degrees C. The highly ordered nature of beta-SiB3 is reflected in its Raman spectrum, which features narrow and distinct lines. In contrast, the Raman spectrum of alpha-SiB3-x is characterized by broad bands, which show a clear relation to the vibrational modes of isostructural, ordered B6P. The detailed composition and structural properties of disordered alpha-SiB3-x were ascertained by a combination of single-crystal X-ray diffraction and Si-29 magic angle spinning NMR experiments. Notably, the compositions of polycrystalline bulk samples (obtained at T amp;lt;= 1200 degrees C) and single crystal samples (obtained from Si-rich molten Si-B mixtures at T amp;gt; 1400 degrees C) are different, SiB2.93(7) and SiB2.64(2), respectively. The incorporation of Si in the polar position of B-12 icosahedra results in highly strained cluster units. This disorder feature was accounted for in the refined crystal structure model by splitting the polar position into three sites. The electron-precise composition of alpha-SiB3-x is SiB2.5 and corresponds to the incorporation of, on average, two Si atoms in each B-12 icosahedron. Accordingly, alpha-SiB3-x constitutes a mixture of B10Si2 and B11Si clusters. The structural and phase stability of alpha-SiB3-x were explored using a first-principles cluster expansion. The most stable composition at 0 K is SiB2.5, which however is unstable with respect to the decomposition beta-SiB3 + Si. Modeling of the configurational and vibrational entropies suggests that alpha-SiB3-x only becomes more stable than beta-SiB3 at temperatures above its decomposition into SiB6 and Si. Hence, we conclude that alpha-SiB3-x is metastable at all temperatures. Density functional theory electronic structure calculations yield band gaps of similar size for electron-precise alpha-SiB2.5 and beta-SiB3, whereas alpha-SiB3 represents a p-type conductor.
  •  
10.
  • Eklöf, Daniel, et al. (författare)
  • Mysterious SiB3 : Identifying the Relation between α- and β-SiB3
  • 2019
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 4:20, s. 18741-18759
  • Tidskriftsartikel (refereegranskat)abstract
    • Binary silicon boride SiB3 has been reported to occur in two forms, as disordered and nonstoichiometric alpha-SiB3-x, which relates to the alpha-rhombohedral phase of boron, and as strictly ordered and stoichiometric beta-SiB3. Similar to other boron-rich icosahedral solids, these SiB3 phases represent potentially interesting refractory materials. However, their thermal stability, formation conditions, and thermodynamic relation are poorly understood. Here, we map the formation conditions of alpha-SiB3-x and beta-SiB3 and analyze their relative thermodynamic stabilities. alpha-SiB3-x is metastable (with respect to beta-SiB3 and Si), and its formation is kinetically driven. Pure polycrystalline bulk samples may be obtained within hours when heating stoichiometric mixtures of elemental silicon and boron at temperatures 1200-1300 degrees C. At the same time, alpha-SiB3-x decomposes into SiB6 and Si, and optimum time-temperature synthesis conditions represent a trade-off between rates of formation and decomposition. The formation of stable beta-SiB3 was observed after prolonged treatment (days to weeks) of elemental mixtures with ratios Si/B = 1:11:4 at temperatures 1175-1200 degrees C. The application of high pressures greatly improves the kinetics of SiB3 formation and allows decoupling of SiB3 formation from decomposition. Quantitative formation of beta-SiB3 was seen at 1100 degrees C for samples pressurized to 5.5-8 GPa. beta-SiB3 decomposes peritectoidally at temperatures between 1250 and 1300 degrees C. The highly ordered nature of beta-SiB3 is reflected in its Raman spectrum, which features narrow and distinct lines. In contrast, the Raman spectrum of alpha-SiB3-x is characterized by broad bands, which show a clear relation to the vibrational modes of isostructural, ordered B6P. The detailed composition and structural properties of disordered alpha-SiB3-x were ascertained by a combination of single-crystal X-ray diffraction and Si-29 magic angle spinning NMR experiments. Notably, the compositions of polycrystalline bulk samples (obtained at T <= 1200 degrees C) and single crystal samples (obtained from Si-rich molten Si-B mixtures at T > 1400 degrees C) are different, SiB2.93(7) and SiB2.64(2), respectively. The incorporation of Si in the polar position of B-12 icosahedra results in highly strained cluster units. This disorder feature was accounted for in the refined crystal structure model by splitting the polar position into three sites. The electron-precise composition of alpha-SiB3-x is SiB2.5 and corresponds to the incorporation of, on average, two Si atoms in each B-12 icosahedron. Accordingly, alpha-SiB3-x constitutes a mixture of B10Si2 and B11Si clusters. The structural and phase stability of alpha-SiB3-x were explored using a first-principles cluster expansion. The most stable composition at 0 K is SiB2.5, which however is unstable with respect to the decomposition beta-SiB3 + Si. Modeling of the configurational and vibrational entropies suggests that alpha-SiB3-x only becomes more stable than beta-SiB3 at temperatures above its decomposition into SiB6 and Si. Hence, we conclude that alpha-SiB3-x is metastable at all temperatures. Density functional theory electronic structure calculations yield band gaps of similar size for electron-precise alpha-SiB2.5 and beta-SiB3, whereas alpha-SiB3 represents a p-type conductor.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 44
Typ av publikation
tidskriftsartikel (43)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (43)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Hedin, Niklas (3)
Zou, Xiaodong (2)
Fischer, Andreas (2)
Alling, Björn (2)
van Der Spoel, David (2)
Jaworski, Aleksander (2)
visa fler...
Strømme, Maria, 1970 ... (2)
Sun, Junliang (2)
Hedenqvist, Mikael S ... (2)
Cheung, Ocean (2)
Wu, Qiong (2)
Budnyak, Tetyana M. (1)
Leffler, Hakon (1)
Shi, Yijun (1)
Abbas, Zareen, 1962 (1)
Johnsson, Mats (1)
Helleday, Thomas (1)
Nordlander, Ebbe (1)
Kihlberg, Jan (1)
Zhang, Baozhong (1)
Mathew, Aji P. (1)
Thersleff, Thomas (1)
Zhang, Haiyang (1)
Nilsson, L. (1)
Sunnerhagen, Per, 19 ... (1)
Erdelyi, Mate, 1975 (1)
Zozoulenko, Igor (1)
Nielsen, C (1)
Wang, Lei (1)
Simak, Sergey (1)
Bernin, Diana, 1979 (1)
Johansson, Gunnar (1)
Jannasch, Patric (1)
Svedlindh, P (1)
Johansson, Eva (1)
Seisenbaeva, Gulaim (1)
Kessler, Vadim (1)
Jalvo, Blanca (1)
Elf, Johan (1)
Ederth, Thomas, 1969 ... (1)
Olsson, Richard (1)
Linares, Mathieu (1)
Svedlindh, Peter (1)
Kongsted, Jacob (1)
Cardenas, Marite (1)
Jenmalm Jensen, Anni ... (1)
Olsson, Richard T. (1)
Valencia, Luis (1)
Nordén, Bengt, 1945 (1)
Ekblad, Tobias, 1979 ... (1)
visa färre...
Lärosäte
Uppsala universitet (10)
Chalmers tekniska högskola (7)
Stockholms universitet (6)
Göteborgs universitet (5)
Kungliga Tekniska Högskolan (5)
Linköpings universitet (5)
visa fler...
Lunds universitet (4)
RISE (3)
Umeå universitet (2)
Luleå tekniska universitet (2)
Karolinska Institutet (2)
Sveriges Lantbruksuniversitet (2)
Malmö universitet (1)
visa färre...
Språk
Engelska (44)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (34)
Teknik (14)
Medicin och hälsovetenskap (3)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy