SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Åkerman Johan Professor) srt2:(2015-2019)"

Search: WFRF:(Åkerman Johan Professor) > (2015-2019)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Eklund, Anders, 1986- (author)
  • Microwave Frequency Stability and Spin Wave Mode Structure in Nano-Contact Spin Torque Oscillators
  • 2016
  • Doctoral thesis (other academic/artistic)abstract
    • The nano-contact spin torque oscillator (NC-STO) is an emerging device for highly tunable microwave frequency generation in the range from 0.1 GHz to above 65 GHz with an on-chip footprint on the scale of a few μm. The frequency is inherent to the magnetic material of the NC-STO and is excited by an electrical DC current by means of the spin torque transfer effect. Although the general operation is well understood, more detailed aspects such as a generally nonlinear frequency versus current relationship, mode-jumping and high device-to-device variability represent open questions. Further application-oriented questions are related to increasing the electrical output power through synchronization of multiple NC-STOs and integration with CMOS integrated circuits.This thesis consists of an experimental part and a simulation part. Experimentally, for the frequency stability it is found that the slow but strong 1/f-type frequency fluctuations are related to the degree of nonlinearity and the presence of perturbing, unexcited modes. It is also found that the NC-STO can exhibit up to three propagating spin wave oscillation modes with different frequencies and can randomly jump between them. These findings were made possible through the development of a specialized microwave time-domain measurement circuit. Another instrumental achievement was made with synchrotron X-rays, where we image dynamically the magnetic internals of an operating NC-STO device and reveal a spin wave mode structure with a complexity significantly higher than the one predicted by the present theory.In the simulations, we are able to reproduce the nonlinear current dependence by including spin wave-reflecting barriers in the nm-thick metallic, magnetic free layer. A physical model for the barriers is introduced in the form of metal grain boundaries with reduced magnetic exchange coupling. Using the experimentally measured average grain size of 30 nm, the spin wave mode structure resulting from the grain model is able to reproduce the experimentally found device nonlinearity and high device-to-device variability.In conclusion, the results point out microscopic material grains in the metallic free layer as the reason behind the nonlinear frequency versus current behavior and multiple propagating spin wave modes and thereby as a source of device-to-device variability and frequency instability.
  •  
2.
  • Le, Quang Tuan, 1976- (author)
  • Magnetodynamics in Spin Valves and Magnetic Tunnel Junctions with Perpendicular and Tilted Anisotropies
  • 2016
  • Doctoral thesis (other academic/artistic)abstract
    • Spin-torque transfer (STT) effects have brought spintronics ever closer to practical electronic applications, such as MRAM and active broadband microwave spin-torque oscillator (STO), and have emerged as an increasingly attractive field of research in spin dynamics. Utilizing materials with perpendicular magnetic anisotropy (PMA) in such applications offers several great advantages such as low-current, low-field operation combined with high thermal stability. The exchange coupling that a PMA thin film exerts on an adjacent in-plane magnetic anisotropy (IMA) layer can tilt the IMA magnetization direction out of plane, thus creating a stack with an effective tilted magnetic anisotropy. The tilt angle can be engineered via both intrinsic material parameters, such as the PMA and the saturation magnetization, and extrinsic parameters, such as the layer thicknesses.      STOs can be fabricated in one of a number of forms—as a nanocontact opening on a mesa from a deposited pseudospin-valve (PSV) structure, or as a nanopillar etching from magnetic tunneling junction (MTJ)—composed of highly reproducible PMA or predetermined tilted magnetic anisotropy layers.      All-perpendicular CoFeB MTJ STOs showed high-frequency microwave generation with extremely high current tunability, all achieved at low applied biases. Spin-torque ferromagnetic resonance (ST-FMR) measurements and analysis revealed the bias dependence of spin-torque components, thus promise great potential for direct gate-voltage controlled STOs.      In all-perpendicular PSV STOs, magnetic droplets were observed underneath the nanocontact area at a low drive current and low applied field. Furthermore, preliminary results for microwave auto-oscillation and droplet solitons were obtained from tilted-polarizer PSV STOs. These are promising and would be worth investigating in further studies of STT driven spin dynamics.
  •  
3.
  • Jiang, Sheng (author)
  • Engineering Magnetic Droplets in Nanocontact Spin-Torque Nano-Oscillators
  • 2018
  • Doctoral thesis (other academic/artistic)abstract
    • Spin-torque nano-oscillators (STNOs) are nanoscale spintronic devices capable of generating highly tunable broadband microwave signals. In this thesis, I study nanocontact (NC)-based STNOs using strong perpendicular magnetic anisotropy(PMA) free layers, where a novel magnetic soliton—a magnetic droplet—exists. This work is devoted to further understanding the characteristics of the magnetic droplet in diverse magnetic structures, including orthogonal and all-perpendicular(all-PMA) spin valves (SVs) and orthogonal magnetic tunnel junctions (MTJs). The nucleation, transition, and collapse of magnetic droplets are observed, tailored, and analyzed by engineering the magnetic properties of the thin films’ stacks. This thesis consists of three main parts: Orthogonal SVs with [Co/Ni]/Cu/CoxNiFe1−x: Magnetic droplets were first observed in orthogonal SV STNOs. We engineered the fixed layer magnetization Ms,p by cosputtering different compositions of CoxNiFe1−x (x = 0−1). The nucleation boundaries of a magnetic droplet in a current-field phase shift to a lower region as Ms,p decreases. The nucleation boundary is also examined under canted fields in order to better understand the drift instability of the droplets. The observations not only confirm the theoretical predictions of nucleation boundary, but suggest a method for controlling the nucleation boundary. All-PMA SVs with [Co/Ni]/Cu/[Co/Pd]: In contrast to orthogonal SVs,all-PMA NC-STNOs show many novel features. First, thanks to the dramatic improvement in droplet stability that results from using a [Co/Pd] PMA fixed layer, the droplets are directly imaged by a scanning transmission x-ray microscopy(STXM). The transition between the static bubble and magnetic droplet is also observed and imaged. Moreover, to investigate the effect of PMA, He+ irradiation is conducted on the all-PMA NC-STNOs, progressively tuning the PMA. The transitions of the normal FMR-like mode and droplet mode are demonstrated. The behavior of frequency tunability versus PMA is systematically studied. These investigations of all-PMA and irradiated NC-STNOs show that it is feasible to engineer the magnetic properties of STNOs through He+ irradiation. Besides, the dynamic droplets and static bubbles have great potential applications in next-generation information carriers. Orthogonal MTJs with CoFeB/MgO/CoFe: The existence of droplets in orthogonal MTJs is still debated. Instead, the magnetodynamics are investigated here. Very importantly, we find that the frequency tunability is determined by the spin-transfer torque (STT), the voltage-controlled magnetic anisotropy (VCMA), and thermal heating. This paves the way to improving tunability by combining these contributions. This study will contribute greatly to real applications, such as microwave generators and detectors.
  •  
4.
  • Mazraati, Hamid, Industrial PhD Student, 1989- (author)
  • Linear, Non-Linear, and Synchronizing Spin Wave Modes in Spin Hall Nano-Oscillators
  • 2018
  • Doctoral thesis (other academic/artistic)abstract
    • Spin Hall nano-oscillators (SHNOs) are nanoscale spintronic devices that generate microwave signals with highly tunable frequency. This thesis focuses on improving the signal quality of nanoconstriction-based SHNOs and also on developing a better understanding of their magnetization dynamics.In the first part of the thesis, we fabricate and characterize low-threshold current SHNOs using NiFe/β-W bilayers. Due to the high spin Hall angle of the β-phase W, the auto-oscillation threshold current is improved by 60% over SHNOs based on NiFe/Pt. We also demonstrate low operational current by utilizing W/Co20Fe60B20/MgO stacks on highly resistive silicon substrates. Thanks to the moderate perpendicular magnetic anisotropy (PMA) of Co20Fe60B20, these SHNOs show much wider frequency tunability than SHNOs based on NiFe with no PMA. Performance is further improved by using highly resistive silicon substrates with a high heat conductance, dissipating the generated excess heat much better than sapphire substrates. Moreover, it also means that the fabrication of SHNOs is now compatible with conventional CMOS fabrication, which is necessary if SHNOs are to be used in integrated circuits. In another approach, we attempt to decrease the threshold current of SHNOs based on an NiFe/Pt stack by inserting an ultra-thin Hf layer in the middle of the stack. This Hf dusting decreases the damping of the bilayer linearly but also degrades its spin Hall efficiency. These opposing trends determine the optimum Hf thickness to ≈0.4 nm, at which the auto-oscillation threshold current is minimum. Our achievements arising from these three approaches show a promising path towards the realization of low-current SHNO microwave devices with highly efficient spin-orbit torque.In the next chapter, we use both electrical experimentation and micromagnetic simulation to study the auto-oscillating spin wave modes in nanoconstriction-based SHNOs as a function of the drive current and the applied field. First, we investigate the modes under an in-plane low-range field of 40-80 mT, which is useful for developing low-field spintronic devices with applications in microwave signal generation. It is also essential for future studies on the synchronization of multiple SHNOs. Next, using an out-of-plane applied magnetic field, we observe three different modes and demonstrate switching between them under a fixed external field by tuning only the drive current. The flexibility of these nanopatterned spin Hall nano-oscillators is desirable for implementing oscillator-based neuromorphic computing devices.In the final part, we study the synchronization of multiple nanoconstriction-based SHNOs in weak in-plane fields. We electrically investigate the synchronization versus the angle of the field, observing synchronization for angles below a threshold angle. In agreement with the experimental results, the spatial profile of the spin waves from the simulations shows that the relative angle between the modes from the nanoconstrictions decreases with decreasing the field angle, thus facilitating synchronization. The synchronization observed at low in-plane fields improves the microwave signal quality and could also be useful for applications such as neuromorphic computing.
  •  
5.
  • Qejvanaj, Fatjon, 1985- (author)
  • Fabrication and Characterization of magnetometer for space applications
  • 2016
  • Doctoral thesis (other academic/artistic)abstract
    • The present rapid increase in the number of space missions demands a decrease in the cost of satellite equipment, but also requires the development of instruments that have low power consumption, low weight, and small size.Anisotropic magnetoresistance (AMR) sensors can answer these needs on account of their small size, weight, and power consumption. AMR sensors also produce lower noise than either giant magnetoresistance (GMR) or tunnel magnetoresistance (TMR) devices and are thus more suitable for space applications.The type of AMR sensor developed in this study was a Planar Hall EffectBridge (PHEB) sensor. The FM layer was also coupled with an AFM layer in order to fix the internal magnetization of the FM layer.One technique that was employed in order to meet the low-noise requirement was to make the FM layer thicker than has previously been attempted.In doing so, the exchange bias field between the AFM layer and the FMlayer is no longer high enough to bias the thicker FM layer, so in order to correct this unwanted effect, the material stack was upgraded to two AFM–FM interfaces. With this configuration, it became possible to increase the exchange field by up to 60%. Stronger exchange bias leads to a thicker FMlayer and so to lower noise in the device performance. Another strategy that was used to lower the resistance of the device was to implement an NiFeX alloy instead of the standard NiFe. NiFeX consists of an alloy of NiFe andCu, Ag, or Au; the last of these is known to have very low resistivity.This solution leads to a significant lowering of the device’s resistance. A recent technological advance used to fabricate devices with lower resistance is to deposit a multilayer of AFM–FM.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view