SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Åkesson Dan 1970 ) srt2:(2015-2019)"

Sökning: WFRF:(Åkesson Dan 1970 ) > (2015-2019)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bakare, Fatimat O., et al. (författare)
  • Thermomechanical properties of bio-based composites made from a lactic acid thermoset resin and flax and flax/basalt fibre reinforcements
  • 2016
  • Ingår i: Composites. Part A, Applied science and manufacturing. - : Elsevier. - 1359-835X .- 1878-5840. ; 83, s. 176-184
  • Tidskriftsartikel (refereegranskat)abstract
    • Low viscosity thermoset bio-based resin was synthesised from lactic acid, allyl alcohol and pentaerythritol. The resin was impregnated into cellulosic fibre reinforcement from flax and basalt and then compression moulded at elevated temperature to produce thermoset composites. The mechanical properties of composites were characterised by flexural, tensile and Charpy impact testing whereas the thermal properties were analysed by dynamic mechanical thermal analysis (DMTA) and thermogravimetric analysis (TGA). The results showed a decrease in mechanical properties with increase in fibre load after 40 wt.% for the neat flax composite due to insufficient fibre wetting and an increase in mechanical properties with increase fibre load up to 60 wt.% for the flax/basalt composite. The results of the ageing test showed that the mechanical properties of the composites deteriorate with ageing; however, the flax/basalt composite had better mechanical properties after ageing than the flax composite before ageing.
  •  
2.
  • Bátori, Veronika, 1980-, et al. (författare)
  • Anaerobic degradation of bioplastics: A review
  • 2018
  • Ingår i: Waste Management. - : Elsevier BV. - 0956-053X. ; 80, s. 406-413
  • Tidskriftsartikel (refereegranskat)abstract
    • Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW), leading to renewableenergy production in the form of methane, is a preferable method for dealing with the increasing amountof waste. Food waste is separated at the source in many countries for anaerobic digestion. However, thepresence of plastic bags is a major challenge for such processes. This study investigated the anaerobicdegradability of different bioplastics, aiming at potential use as collecting bags for the OFMSW. Thechemical composition of the bioplastics and the microbial community structure in the AD processaffected the biodegradation of the bioplastics. Some biopolymers can be degraded at hydraulic retentiontimes usually applied at the biogas plants, such as poly(hydroxyalkanoate)s, starch, cellulose and pectin,so no possible contamination would occur. In the future, updated standardization of collecting bags forthe OFMSW will be required to meet the requirements of effective operation of a biogas plant.
  •  
3.
  • Bátori, Veronika, 1980-, et al. (författare)
  • Pectin-based Composites
  • 2017
  • Ingår i: Handbook of Composites from Renewable Materials. - : John Wiley & Sons. - 9781119223795 ; , s. 487-518
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • One third of the cell wall of vascular plants is composed of pectin, which serves as the cementing material for the cellulosic network, behaving as a stabilized gel. Industrially, pectin is produced from juice and sugar production waste. Different sources and extraction conditions result in diversity in characteristics and applications of pectin. Most commonly, pectin is used in the food industry as a gelling and thickening agent and it is favored in the pharmaceutical industry as a carrier for colon-specific drugs. Pectin has good potential to be utilized as a matrix in production of environmentally friendly film packaging as well as biocomposite materials. Pectin is sensitive to chemical reactions and promotes the homogeneous immobilization of cells, genes, and proteins. However, due to limited mechanical properties pectin is not used for structural applications but instead rather for composites in which its biodegradable properties can be utilized. Pectin is often reinforced with hydroxyapatite and biphasic calcium phosphate for bone regeneration and tissue engineering applications. It can also be used as a biosorbent for copper removal from aqueous solutions. Active packaging of nanohybrids composed of pectin and halloysite nanotubes that are loaded with rosemary essential oil is another application of pectin-based composites.
  •  
4.
  • Bátori, Veronika, 1980-, et al. (författare)
  • Production of Pectin-Cellulose Biofilms: A New Approach for Citrus Waste Recycling
  • 2017
  • Ingår i: International Journal of Polymer Science. - : Hindawi Limited. - 1687-9422 .- 1687-9430. ; 2017, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • While citrus waste is abundantly generated, the disposal methods used today remain unsatisfactory: they can be deleterious for ruminants, can cause soil salinity, or are not economically feasible; yet citrus waste consists of various valuable polymers. This paper introduces a novel environmentally safe approach that utilizes citrus waste polymers as a biobased and biodegradable film, for example, for food packaging. Orange waste has been investigated for biofilm production, using the gelling ability of pectin and the strength of cellulosic fibres. A casting method was used to form a film from the previously washed, dried, and milled orange waste. Two film-drying methods, a laboratory oven and an incubator shaker, were compared. FE-SEM images confirmed a smoother film morphology when the incubator shaker was used for drying. The tensile strength of the films was 31.67 ± 4.21 and 34.76 ± 2.64 MPa, respectively, for the oven-dried and incubator-dried films, which is within the range of different commodity plastics. Additionally, biodegradability of the films was confirmed under anaerobic conditions. Films showed an opaque appearance with yellowish colour.
  •  
5.
  • Bátori, Veronika, 1980-, et al. (författare)
  • The effect of glycerol, sugar and maleic anhydride on pectin-cellulose biofilms prepared from orange waste
  • 2019
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360.
  • Tidskriftsartikel (refereegranskat)abstract
    • This study was conducted to improve the properties of thin films prepared from orange waste by the solution casting method. The main focus was the elimination of holes in the film structure by establishing better cohesion between the major cellulosic and pectin fractions. For this, a previously developed method was improved first by the addition of sugar to promote pectin gelling, then by the addition of maleic anhydride. Principally, maleic anhydride was introduced to the films to induce cross-linking within the film structure. The effects of concentrations of sugar and glycerol as plasticizers and maleic anhydride as a cross-linking agent on the film characteristics were studied. Maleic anhydride improved the structure, resulting in a uniform film, and morphology studies showed better adhesion between components. However, it did not act as a cross-linking agent, but rather as a compatibilizer. The middle level (0.78%) of maleic anhydride content resulted in the highest tensile strength (26.65 ± 3.20 MPa) at low (7%) glycerol and high (14%) sugar levels and the highest elongation (28.48% ± 4.34%) at high sugar and glycerol levels. To achieve a uniform film surface with no holes present, only the lowest (0.39%) level of maleic anhydride was necessary. 
  •  
6.
  • Esmaeili, Nima, et al. (författare)
  • Synthesis and characterization of methacrylated star-shaped poly(lactic acid) emplying core moilecules with different hydroxyl groups
  • 2017
  • Ingår i: Journal of Applied Polymer Science. - : Wiley. - 0021-8995 .- 1097-4628. ; 134:39
  • Tidskriftsartikel (refereegranskat)abstract
    • A set of novel bio-based star-shaped thermoset resins was synthesized via ring-opening polymerization of lactide and employing different multi-hydroxyl core molecules, including ethylene glycol, glycerol, and erythritol. The branches were end-functionalized with methacrylic anhydride. The effect of the core molecule on the melt viscosity, the curing behavior of the thermosets and also, the thermomechanical properties of the cured resins were investigated. Resins were characterized by Fourier-transform infrared spectroscopy, 13C-NMR, and 1H-NMR to confirm the chemical structure. Rheological analysis and differential scanning calorimetry analysis were performed to obtain the melt viscosity and the curing behavior of the studied star-shaped resins. Thermomechanical properties of the cured resins were also measured by dynamic mechanical analysis. The erythritol-based resin had superior thermomechanical properties compared to the other resins and also, lower melt viscosity compared to the glycerol-based resin. These are of desired characteristics for a resin, intended to be used as a matrix for the structural composites. Thermomechanical properties of the cured resins were also compared to a commercial unsaturated polyester resin and the experimental results indicated that erythritol-based resin with 82% bio-based content has superior thermomechanical properties, compared to the commercial polyester resin. Results of this study indicated that although core molecule with higher number of hydroxyl groups results in resins with better thermomechanical properties, number of hydroxyl groups is not the only governing factor for average molecular weight and melt viscosity of the uncured S-LA resins.
  •  
7.
  • Fazelinejad, Samaneh, et al. (författare)
  • Repeated mechanical recycling of polylactic acid filled with chalk
  • 2017
  • Ingår i: Progress in Rubber, Plastics and Recycling Technology. - 0266-7320 .- 1478-2413. ; , s. 1-16
  • Tidskriftsartikel (refereegranskat)abstract
    • Polylactic acid (PLA) was compounded with 30 wt% chalk and 5 wt% of a biobased plasticiser on a twin screw extruder. Mechanical recycling of the obtained compound was studied by multiple extrusions up to six cycles. The degradation was monitored by mechanical and thermal tests. Tensile and flexural tests did not reveal any major degradation after six cycles of processing. Characterising the material with differential scanning calorimetry (DSC) did not detect any significant change of the thermal properties. The material was also characterised by FTIR and, again, no significant change was detected. The material was finally characterised by melt flow index and by proton nuclear magnetic resonance (1H-NMR). Both tests revealed that some degradation had occurred. The 1H-NMR clearly showed that the chain length had been reduced. Also, the MFI test showed that degradation had occurred. However, the study reveals that PLA filled with chalk can be recycled by repeated extrusion for up to 6 cycles, without severe degradation. This should be of relevance when considering the end-of-life treatment of polymer products made from PLA.
  •  
8.
  • Gustafsson, Jesper, et al. (författare)
  • Development of Bio-Based Films and 3D Objects from Apple Pomace
  • 2019
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360. ; 11:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Extensive quantities of apple pomace are generated annually but its disposal is still challenging. This study addresses this issue by introducing a new, environmentally-friendly approach for the production of sustainable biomaterials from apple pomace, containing 55.47% free sugars and a water insoluble fraction, containing 29.42 ± 0.44% hemicelluloses, 38.99 ± 0.42% cellulose, and 22.94 ± 0.12% lignin. Solution casting and compression molding were applied to form bio-based films and 3D objects (i.e., fiberboards), respectively. Using glycerol as plasticizer resulted in highly compact films with high tensile strength and low elongation (16.49 ± 2.54 MPa and 10.78 ± 3.19%, respectively). In contrast, naturally occurring sugars in the apple pomace showed stronger plasticizing effect in the films and resulted in a fluffier and connected structure with significantly higher elongation (37.39 ± 10.38% and 55.41 ± 5.38%, respectively). Benefiting from the self-binding capacity of polysaccharides, fiberboards were prepared by compression molding at 100 °C using glycerol or naturally occurring sugars, such as plasticizer. The obtained fiberboards exhibited tensile strength of 3.02–5.79 MPa and elongation of 0.93%–1.56%. Possible applications for apple pomace biomaterials are edible/disposable tableware or food packaging. 
  •  
9.
  • Jabbari, Mostafa, et al. (författare)
  • Introducing all-polyamide composite coated fabrics : A method to produce fully recyclable single-polymer composite coated fabrics
  • 2016
  • Ingår i: Journal of Applied Polymer Science. - : Wiley. - 0021-8995 .- 1097-4628. ; 133:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Novel all-polyamide composite (APC) has been developed to replace traditional coated fabrics with good interfacial adhesionand enhanced recyclability. The composite is fully recyclable since it contains no other materials except polyamide. APC was preparedby partially dissolving a polyamide fabric by treatment with a film-forming polyamide solution. The effect of the polyamidesolution concentration and gelling time on tensile and viscoelastic properties of APCs was investigated to explore the optimum processingparameters for balancing the good interfacial adhesion. The composite properties were studied by dynamic mechanical thermalanalysis (DMTA), tensile testing and scanning electron microscopy (SEM). The results showed a good adhesion between the coatingand the fabric. A new method was introduced to convert a low value added textile waste to a high value-added product. The compositeis tunable, in terms of having a dense or a porous top-layer depending on the end-use requirements.
  •  
10.
  • Jabbari, Mostafa, et al. (författare)
  • New Solvent for Polyamide 66 and Its Use for Preparing a Single-Polymer Composite-Coated Fabric
  • 2018
  • Ingår i: International Journal of Polymer Science. - : Hindawi Limited. - 1687-9422 .- 1687-9430.
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyamides (PAs) are one of the most important engineering polymers; however, the difficulty in dissolving them hinders their applications. Formic acid (FA) is the most common solvent for PAs, but it has industrial limitations. In this contribution, we proposed a new solvent system for PAs by replacing a portion of the FA with urea and calcium chloride (FAUCa). Urea imparts the hydrogen bonding and calcium ion from the calcium chloride, as a Lewis acid was added to the system to compensate for the pH decrease due to the addition of urea. The results showed that the proposed solvent (FAUCa) could readily dissolve PAs, resulting in a less decrease in the mechanical properties during the dissolution. The composite prepared using the FAUCa has almost the same properties as the one prepared using the FA solution. The solution was applied on a polyamide 66 fabric to make an all-polyamide composite-coated fabric, which then was characterized. The FAUCa solution had a higher viscosity than the one prepared using the neat FA solvent, which can be an advantage in the applications which need higher viscosity like preparing the all-polyamide composite-coated fabric. A more viscous solution makes a denser coating which will increase the water /gas tightness. In conclusion, using the FAUCa solvent has two merits: (1) replacement of 40% of the FA with less harmful and environmentally friendly chemicals and (2) enabling for the preparation of more viscous solutions, which makes a denser coating.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy