SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Åslund Magnus) srt2:(2005-2009)"

Sökning: WFRF:(Åslund Magnus) > (2005-2009)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fredenberg, Erik, PhD, 1979-, et al. (författare)
  • A photon-counting detector for dual-energy breast tomosynthesis
  • 2009
  • Ingår i: Medical Imaging 2009. - : SPIE. ; , s. 72581-
  • Konferensbidrag (refereegranskat)abstract
    • We present the first evaluation of a recently developed silicon-strip detector for photon-counting dual-energy breast tomosynthesis. The detector is well suited for tomosynthesis with high dose efficiency and intrinsic scatter rejection. A method was developed for measuring the spatial resolution of a system based on the detector in terms of the three-dimensional modulation transfer function (MTF). The measurements agreed well with theoretical expectations, and it was seen that depth resolution was won at the cost of a slightly decreased lateral resolution. This may be a justifiable trade-off as clinical images acquired with the system indicate improved conspicuity of breast lesions. The photon-counting detector enables dual-energy subtraction imaging with electronic spectrumsplitting. This improved the detectability of iodine in phantom measurements, and the detector was found to be stable over typical clinical acquisition times. A model of the energy resolution showed that further improvements are witn reach by optimization of the detector.
  •  
2.
  • Fredenberg, Erik, PhD, 1979-, et al. (författare)
  • A Tunable Energy Filter for Medical X-Ray Imaging
  • 2008
  • Ingår i: X-Ray Optics and Instrumentation. - : Hindawi. - 1687-7632 .- 1687-7640. ; 2008
  • Tidskriftsartikel (refereegranskat)abstract
    • A multiprism lens (MPL) is a refractive X-ray lens, and its chromatic properties can be employed in an energy filtering setup to obtain a narrow tunable X-ray spectrum. We present the first evaluation of such a filter for medical X-ray imaging. The experimental setup yields a 6.6 gain of flux at 20 keV, and we demonstrate tunability by altering the energy spectrum to center also around 17 and 23 keV. All measurements are found to agree well with ray-tracing and a proposed geometrical model. Compared to a model mammography system with absorption filtering, the experimental MPL filter reduces dose 13–25% for 3–7 cm breasts if the spectrum is centered around the optimal energy. Additionally, the resolution is improved 2.5 times for a 5 cm breast. The scan time is increased 3 times but can be reduced with a slightly decreased energy filtering and resolution.
  •  
3.
  • Fredenberg, Erik, 1979-, et al. (författare)
  • An efficient pre-object collimator based on an x-ray lens
  • 2009
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405. ; 36:2, s. 626-633
  • Tidskriftsartikel (refereegranskat)abstract
    • A multiprism lens (MPL) is a refractive x-ray lens with one-dimensional focusing properties. If used as a pre-object collimator in a scanning system for medical x-ray imaging, it reduces the divergence of the radiation and improves on photon economy compared to a slit collimator. Potential advantages include shorter acquisition times, a reduced tube loading, or improved resolution. We present the first images acquired with a MPL in a prototype for a scanning mammography system. The lens showed a gain of flux of 1.32 compared to a slit collimator at equal resolution, or a gain in resolution of 1.31–1.44 at equal flux. We expect the gain of flux in a clinical setup with an optimized MPL and a custom-made absorption filter to reach 1.67, or 1.45–1.54 gain in resolution.
  •  
4.
  • Fredenberg, Erik, PhD, 1979-, et al. (författare)
  • Contrast-enhanced dual-energy subtraction imaging using electronic spectrum-splitting and multi-prism x-ray lenses
  • 2008
  • Ingår i: Medical Imaging 2008 - Physics of Medical Imaging. - San Diego, CA, USA : SPIE. - 9780819470973 ; , s. 91310-91310
  • Konferensbidrag (refereegranskat)abstract
    • Dual-energy subtraction imaging (DES) is a method to improve the detectability of contrast agents over a lumpy background. Two images, acquired at x-ray energies above and below an absorption edge of the agent material, are logarithmically subtracted, resulting in suppression of the signal from the tissue background and a relative enhancement of the signal from the agent. Although promising, DES is still not widely used in clinical practice. One reason may be the need for two distinctly separated x-ray spectra that are still close to the absorption edge, realized through dual exposures which may introduce motion unsharpness. In this study, electronic spectrum-splitting with a silicon-strip detector is theoretically and experimentally investigated for a mammography model with iodinated contrast agent. Comparisons are made to absorption imaging and a near-ideal detector using a signal-to-noise ratio that includes both statistical and structural noise. Similar to previous studies, heavy absorption filtration was needed to narrow the spectra at the expense of a large reduction in x-ray flux. Therefore, potential improvements using a chromatic multi-prism x-ray lens (MPL) for filtering were evaluated theoretically. The MPL offers a narrow tunable spectrum, and we show that the image quality can be improved compared to conventional filtering methods.
  •  
5.
  • Fredenberg, Erik, PhD, 1979-, et al. (författare)
  • Imaging with multi-prism x-ray lenses
  • 2008
  • Ingår i: Medical Imaging 2008 - Physics of Medical Imaging. - : SPIE. - 9780819470973 ; , s. 91308-91308
  • Konferensbidrag (refereegranskat)abstract
    • The multi-prism lens (MPL) is a refractive x-ray lens consisting of two rows of prisms facing each other at an angle. Rays entering the lens at the periphery will encounter a larger number of prisms than will central ones, hence experiencing a greater refraction. The focusing effect of the MPL can be used to gather radiation from a large aperture onto a smaller detector, and accordingly to make better use of the available x-ray flux in medical x-ray imaging. Potential advantages of a better photon economy include shorter acquisition times, a reduced tube loading, or an improved resolution. Since the focusing effect is one-dimensional it matches the design of scanning systems. In this study we present the first images acquired with an MPL instead of the pre-breast slit collimator in a scanning mammography system. According to the measurements, the MPL is able to increase the flux 32% at equal resolution compared to the slit collimator, or to improve the resolution 2.4 mm(-1) at equal flux. If used with a custom-made absorption filter in a clinical set-up, the gain of flux of the MPL is expected to be at least 45%, and the corresponding improvement in resolution to be 3 mm(-1).
  •  
6.
  • Åslund, Magnus, et al. (författare)
  • AEC for scanning digital mammography based on variation of scan velocity
  • 2005
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405. ; 32:11, s. 3367-3374
  • Tidskriftsartikel (refereegranskat)abstract
    • A theoretical evaluation of nonuniform x-ray field distributions in mammography was conducted. An automatic exposure control (AEC) is proposed for a scanning full field digital mammography system. It uses information from the leading part of the detector to vary the scan velocity dynamically, thus creating a nonuniform x-ray field in the scan direction. Nonuniform radiation fields were also created by numerically optimizing the scan velocity profile to each breast's transmission distribution, with constraints on velocity and acceleration. The goal of the proposed AEC is to produce constant pixel signal-to-noise ratio throughout the image. The target pixel SNR for each image could be set based on the breast thickness, breast composition, and the beam quality as to achieve the same contrast-to-noise ratio between images for structures of interest. The results are quantified in terms of reduction in entrance surface air kerma (ESAK) and scan time relative to a uniform x-ray field. The theoretical evaluation was performed on a set of 266 mammograms. The performance of the different methods to create nonuniform fields decreased with increased detector width, from 18% to 11% in terms of ESAK reduction and from 30% to 25% in terms of scan time reduction for the proposed AEC and detector widths from 10 to 60 mm. Some correlation was found between compressed breast thickness and the projected breast area onto the image field. This translated into an increase of the ESAK and decrease of the scan time reduction with breast thickness. Ideally a nonuniform field in two dimensions could reduce the entrance dose by 39% on average, whereas a field nonuniform in only the scanning dimension ideally yields a 20% reduction. A benefit with the proposed AEC is that the risk of underexposing the densest region of the breast can be virtually eliminated.
  •  
7.
  • Åslund, Magnus (författare)
  • Digital Mammography with a Photon Counting Detector in a Scanned Multislit Geometry
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Mammography screening aims to reduce the number of breast cancer deaths by early detection of the disease, which is one of the leading causes of deaths for middle aged women in the western world. The risk from the x-ray radiation in mammography is relatively low but still a factor in the benefit-risk ratio of screening. The characterization and optimization of a digital mammography system is presented in this thesis. The investigated system is shown to be highly dose efficient by employing a photon counting detector in a scanning multislit geometry. A novel automatic exposure control (AEC) is proposed and validated in clinical practise. The AEC uses the leading detector edge to measure the transmission of the breast. The exposure is modulated by altering the scan velocity during the scan. A W-Al anode-filter combination is proposed. The characterization of the photon counting detector is performed using the detective quantum efficiency. The effect of the photon counting detector and the multislit geometry on the measurement method is studied in detail. It is shown that the detector has a zero-frequency DQE of over 70\% and that it is quantum limited even at very low exposures. Efficient rejection of image-degrading secondary radiation is fundamental for a dose efficient system. The efficiency of the scatter rejection techniques currently used are quantified and compared to the multislit geometry. A system performance metric with its foundation in statistical decision theory is discussed. It is argued that a photon counting multislit system can operate at approximately half the dose compared to several other digital mammography techniques.
  •  
8.
  • Åslund, Magnus (författare)
  • Method and arrangement relating to x-ray imaging
  • 2006
  • Patent (populärvet., debatt m.m.)abstract
    • The present invention relates to a method and arrangement for controlling exposure in an e-ray apparatus, for depicting an object. The apparatus comprises an x-ray source and a displaceable detector being arranged to move with a controllable speed across an image exposure area. The method comprises the step of: acquiring a signal relating to photons incident on at least a part of the detector, comparing said acquired signal with a target value, and controlling the speed of detector, displacement with respect to the result of the comparison.
  •  
9.
  • Åslund, Magnus, et al. (författare)
  • Optimization of operating conditions in photon counting multi-slit mammography based on Si-strip detectors - art. no. 61420A
  • 2006
  • Ingår i: Medical Imaging 2006: Physics of Medical Imaging, Pts 1-3. - : SPIE. - 9780819461858 ; , s. A1420-A1420
  • Konferensbidrag (refereegranskat)abstract
    • Measurements and simulations of the signal-difference-to-noise ratio (SDNR) and average glandular dose (AGD) have been performed on a photon counting full-field digital mammography system to determine the optimal operating conditions. Several beam qualities were experimentally evaluated by using different combinations of tube voltage, added filters and thickness of BR12 with a tungsten target x-ray tube. The SDNR and AGD were also calculated theoretically for an extended number of operating conditions and a more accurate breast model. As figure of merit for each operating condition, a spectral quantum efficiency (SQE) was calculated as the polychromatic SDNR squared over the optimal monochromatic SDNR squared at the same AGD. The theoretical model agreed within 4% relative the measured SDNR throughout the evaluated breast thickness (30-70 mm) and tube voltage range (26-38 kV). The optimization was performed with a constant SDNR-rate as compared to using a fixed filter thickness. The optimal combinations of tube voltage-filter material were: 32 kV-Ag, 34 kV-Cd, 36 kV-Sn for a breast thickness of 30, 50 and 70 mm respectively. These K-edge filter materials increased the SQE by less than 4% compared to the optimal Al filtration.
  •  
10.
  • Åslund, Magnus, et al. (författare)
  • Optimized AEC for scanning digital mammography based on local variation of scan velocity
  • 2005
  • Ingår i: Medical Imaging 2005: Physics of Medical Imaging, Pts 1 and 2. - BELLINGHAM : SPIE-INT SOC OPTICAL ENGINEERING. - 0819457191 ; , s. 468-477
  • Konferensbidrag (refereegranskat)abstract
    • In mammography, there is an optimal photon energy and current time product that produce the required image quality at the minimal dose. The task of an automatic exposure control (AEC), in full field digital mammography (FFDM) is to minimize the dose by using optimized exposure settings. Each point in a mammogram has different radiological thickness. A conventional AEC samples the thickness in some regions to set the current time product and possibly also the beam quality. We define an ideal AEC as one that optimizes the beam quality and exposure in each point to produce a constant contrast-to-noise ratio (CNR) of structures of interest throughout the image. This paper presents the results from a theoretical evaluation of an AEC proposed for a scanning photon-counting FFDM system. The geometry enables the AEC to use information from the leading detector line to adjust the scan velocity during the scan. Thus, the irradiation can be better optimized in the scanning-direction as compared to a conventional AEC. The scan time is further reduced by increased velocity over sections that contain no tissue. The results are quantified in terms of reduction of entrance dose and scan time. The presented AEC is compared to an ideal AEC, a conventional AEC and is also benchmarked against an ideal regulator. The effect of the detector width is evaluated. Compared to a conventional AEC, both evaluated on a set of 266 mammograms, the ideal AEC would reduce the entrance dose by 39% on average while the proposed AEC for scanning systems reduces the entrance dose by 10-20% and scan-time by 25-32% on average, depending on detector width.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy