SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Åstrand Grundström Ingbritt) srt2:(2001-2004)"

Sökning: WFRF:(Åstrand Grundström Ingbritt) > (2001-2004)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adolfsson, Jörgen, et al. (författare)
  • Upregulation of Flt3 expression within the bone marrow Lin(-)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity
  • 2001
  • Ingår i: Immunity. - 1074-7613. ; 15:4, s. 659-669
  • Tidskriftsartikel (refereegranskat)abstract
    • Flt3 has emerged as a potential regulator of hematopoietic stem cells (HSC). Sixty percent of cells in the mouse marrow Lin(-)Sca1(+)c-kit(+) HSC pool expressed flt3. Although single cell cloning showed comparable high proliferative, myeloid, B, and T cell potentials of Lin(-)Sca1(+)c-kit(+)flt3(+) and Lin(-)Sca1(+)c-kit(+)flt3(-) cells, only Lin(-)Sca1(+)c-kit(+)flt3(-) cells supported sustained multilineage reconstitution. In striking contrast, Lin(-)Sca1(+)c-kit(+)flt3(+) cells rapidly and efficiently reconstituted B and T lymphopoiesis, whereas myeloid reconstitution was exclusively short term. Unlike c-kit, activation of flt3 failed to support survival of HSC, whereas only flt3 mediated survival of Lin(-)Sca1(+)c-kit(+)flt3(+) reconstituting cells. Phenotypic and functional analysis support that Lin(-)Sca1(+)c-kit(+)flt3(+) cells are progenitors for the common lymphoid progenitor. Thus, upregulation of flt3 expression on Lin(-)Sca1(+)c-kit(+) HSC cells is accompanied by loss of self-renewal capacity but sustained lymphoid-restricted reconstitution potential.
  •  
2.
  • Nilsson, Lars, et al. (författare)
  • Involvement and functional impairment of the CD34(+)CD38(-)Thy-1(+) hematopoietic stem cell pool in myelodysplastic syndromes with trisomy 8.
  • 2002
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 100:1, s. 259-267
  • Tidskriftsartikel (refereegranskat)abstract
    • Clonality studies of mature cells suggest that the primary transformation event in myelodysplastic syndrome (MDS) most frequently occurs in a myeloid-restricted progenitor, a hypothesis supported by recent studies of purified CD34(+)Thy1(+) hematopoietic stem cells (HSCs) in cases with trisomy 8 (+8). In contrast, we recently demonstrated that a lymphomyeloid HSC is the target for transformation in MDS cases with del(5q), potentially reflecting heterogeneity within MDS. However, since +8 is known to frequently be a late event in the MDS transformation process, it remained a possibility that CD34(+)CD38(-)Thy1(+) HSC disomic for chromosome 8 might be part of the MDS clone. In the present studies, although a variable fraction of CD34(+)CD38(-)Thy1(+) cells were disomic for chromosome 8, they did not possess normal HSC activity in long-term cultures and nonobese diabetic-severe combined immunodeficiency (NOD-SCID) mice. Mixing experiments with normal CD34(+)CD38(-) cells suggested that this HSC deficiency was intrinsic and not mediated by indirect mechanisms. Furthermore, investigation of 4 MDS cases with combined del(5q) and +8 demonstrated that the +8 aberration was always secondary to del(5q). Whereas del(5q) invariably occurs in CD34(+)CD38(-)Thy-1(+) HSCs, the secondary +8 event might frequently arise in progeny of MDS HSCs. Thus, CD34(+)CD38(-)Thy1(+) HSCs are invariably part of the MDS clone also in +8 patients, and little HSC activity can be recovered from the CD34(+) CD38(-)Thy1(+) HSC. Finally, in advanced cases of MDS, the MDS reconstituting activity is exclusively derived from the minor CD34(+)CD38(-) HSC population, demonstrating that MDS stem cells have a similar phenotype as normal HSCs, potentially complicating the development of autologous transplantation for MDS.
  •  
3.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy