SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Öhrman Olov) srt2:(2020-2024)"

Sökning: WFRF:(Öhrman Olov) > (2020-2024)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergvall, Niklas, et al. (författare)
  • Corefining of Fast Pyrolysis Bio-Oil with Vacuum Residue and Vacuum Gas Oil in a Continuous Slurry Hydrocracking Process
  • 2020
  • Ingår i: Energy & Fuels. - : American Chemical Society. - 0887-0624 .- 1520-5029. ; 34:7, s. 8452-8465
  • Tidskriftsartikel (refereegranskat)abstract
    • Integration of renewable raw materials in existing refineries is most likely the shortest way for the successful, large-scale introduction of biofuels in the transport sector in the short term and medium term. One possible renewable raw material for this application is fast pyrolysis bio-oil (FPBO), which in this study has been coprocessed (at 0 and 20 wt %) with vacuum residue (VR, 50 wt %) and vacuum gas oil (VGO, balance) in a continuous, as well as a semibatch, slurry hydrocracking process. Experiments both with and without FPBO were performed at 450°C and 150 bar with a continuous hydrogen flow through the reactor. Oil-soluble molybdenum hexacarbonyl and molybdenum 2-ethylhexanoate were used as catalyst precursors, to be sulfided in situ. The continuous trials resulted in reactor walls completely free of coking, and they resulted in a low overall coke yield (about 1 wt %). The hydrodeoxygenation reached almost 92%, and the total acid number was reduced by nearly 99% in the FPBO experiment A mass balance of the renewable carbon from FPBO, based on the performed experiments, showed that the fossil CO2 emissions can be lowered by 1.35 kg per kg of processed FPBO if all renewable carbon in gaseous and liquid hydrocarbons is used to replace its fossil counterparts, and all methane formed from FPBO is used to produce hydrogen. Semibatch experiments gave less successful results when upgrading FPBO-containing feedstock, with a high coke yield (8 wt %) as well as a high gas yield (24 wt %). The results of this study demonstrate that FPBO can be successfully coprocessed with heavy fossil oils in a continuous slurry hydrocracking process without neg. affecting the processing of the fossil components of the feed and that a continuous process is preferred over batch or semibatch processes when studying coprocessing of bio-oils.
  •  
2.
  • Bergvall, Niklas, et al. (författare)
  • Slurry Hydroconversion of Solid Kraft Lignin to Liquid Products Using Molybdenum- and Iron-Based Catalysts
  • 2022
  • Ingår i: Energy & Fuels. - : American Chemical Society (ACS). - 1520-5029 .- 0887-0624. ; 36:17, s. 10226-10242
  • Tidskriftsartikel (refereegranskat)abstract
    • Kraft lignin is an abundantly available and largely underutilized renewable material with potential for production of biobased fuels and chemicals. This study reports the results of a series of slurry hydroprocessing experiments with the aim of converting solid Kraft lignin to liquid products suitable for downstream refining in more conventional reactors. Experiments reported in this study were conducted by feeding a lignin slurry to an already hot, liquid-filled reactor to provide momentaneous heating of the lignin to the reaction temperature. This modified batch procedure provided superior results compared to the regular batch experiments, likely since unwanted repolymerization and condensation reactions of the lignin during the heating phase was avoided, and was therefore used for most of the experiments reported. Experiments were performed using both an unsupported Mo-sulfide catalyst and Fe-based catalysts (bauxite and hematite) at varied reaction temperatures, pressures, and catalyst loadings. The use of Mo-sulfide (0.1% Mo of the entire feed mass) at 425 °C and 50 bar resulted in complete conversion of the Kraft lignin to nonsolid products. Very high conversions (>95%) could also be achieved with both sulfided bauxite or hematite at the same temperature and pressure, but this required much higher catalyst loadings (6.25% bauxite or 4.3% hematite of the total feed mass), and around 99% conversion could be achieved at higher temperatures but at the expense of much higher gas yields. Although requiring much higher loadings, the results in this study suggest that comparatively nonexpensive Fe-based catalysts may be an attractive alternative for a slurry-based process aimed at the hydroconversion of solid lignin to liquid products. Possible implementation strategies for a slurry-based hydroconversion process are proposed and discussed.
  •  
3.
  • Bergvall, Niklas, et al. (författare)
  • Upgrading of fast pyrolysis bio-oils to renewable hydrocarbons using slurry- and fixed bed hydroprocessing
  • 2024
  • Ingår i: Fuel processing technology. - : Elsevier B.V.. - 0378-3820 .- 1873-7188. ; 253
  • Tidskriftsartikel (refereegranskat)abstract
    • Liquefaction of lignocellulosic biomass through fast pyrolysis, to yield fast pyrolysis bio-oil (FPBO), is a technique that has been extensively researched in the quest for finding alternatives to fossil feedstocks to produce fuels, chemicals, etc. Properties such as high oxygen content, acidity, and poor storage stability greatly limit the direct use of this bio-oil. Furthermore, high coking tendencies make upgrading of the FPBO by hydrodeoxygenation in fixed-bed bed hydrotreaters challenging due to plugging and catalyst deactivation. This study investigates a novel two-step hydroprocessing concept; a continuous slurry-based process using a dispersed NiMo-catalyst, followed by a fixed bed process using a supported NiMo-catalyst. The oil product from the slurry-process, having a reduced oxygen content (15 wt%) compared to the FPBO and a comparatively low coking tendency (TGA residue of 1.4 wt%), was successfully processed in the downstream fixed bed process for 58 h without any noticeable decrease in catalyst activity, or increase in pressure drop. The overall process resulted in a 29 wt% yield of deoxygenated oil product (0.5 wt% oxygen) from FPBO with an overall carbon recovery of 68%.
  •  
4.
  • Cheah, You Wayne, 1993, et al. (författare)
  • Role of transition metals on MoS 2 -based supported catalysts for hydrodeoxygenation (HDO) of propylguaiacol
  • 2021
  • Ingår i: Sustainable Energy and Fuels. - : Royal Society of Chemistry (RSC). - 2398-4902. ; 5:7, s. 2097-2113
  • Tidskriftsartikel (refereegranskat)abstract
    • Transition metal sulfides (TMSs) are typically used in the traditional petroleum refining industry for hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) applications. Bio-oils require an upgrading process like catalytic hydrodeoxygenation (HDO) to produce advanced biofuels and chemicals. Herein, MoS /γ-Al O promoted by transition metals like nickel (Ni), copper (Cu), zinc (Zn), and iron (Fe) was evaluated for the HDO of a bio-oil model compound, 4-propylguaiacol (PG) in a batch reactor at 340 °C under 50 bar H pressure. The catalyst screening results showed that the sulfided Ni-promoted catalyst gave a high 94% yield of deoxygenated cycloalkanes, however for the sulfided Cu-promoted catalyst, 42% of phenolics remain in the reaction medium after 5 h. The results also revealed that the sulfided Zn and Fe-promoted catalysts gave a final yield of 16% and 19% at full PG conversion, respectively, for deoxygenated aromatics. A kinetic model considering the main side reactions was developed to elucidate the reaction pathway of demethoxylation and dehydroxylation of PG. The developed kinetic model was able to describe the experimental results well with a coefficient of determination of 97% for the Ni-promoted catalyst system. The absence of intermediates like 4-propylcyclohexanone and 4-propylcyclohexanol during the reaction implies that direct deoxygenation (DDO) is the dominant pathway in the deoxygenation of PG employing sulfided catalysts. The current work also demonstrated that the activity of the transition metal promoters sulfides for HDO of PG could be correlated to the yield of deoxygenated products from the hydrotreatment of Kraft lignin. 2 2 3 2
  •  
5.
  • Cheah, You Wayne, 1993, et al. (författare)
  • Slurry co-hydroprocessing of Kraft lignin and pyrolysis oil over unsupported NiMoS catalyst: A strategy for char suppression
  • 2023
  • Ingår i: Chemical Engineering Journal. - 1385-8947. ; 475
  • Tidskriftsartikel (refereegranskat)abstract
    • Pyrolysis oil (PO) assisted Kraft lignin (KL) liquefaction over an unsupported NiMoS catalyst in a paraffin solvent was explored in this work. A paraffin solvent was used to represent hydrogenated vegetable oil (HVO) which is a biofuel. We have for the first time showed that when co-processing Kraft lignin with pyrolysis oil in a paraffin solvent the char formation could be completely suppressed. The complex composition of PO, containing various compounds with different functional groups, was able to aid the depolymerization pathways of lignin by obstructing the condensation path of reactive lignin derivatives. To further understand the role of different functional groups present in pyrolysis oil during lignin liquefaction, we investigate the co-hydroprocessing of Kraft lignin with various oxygenate monomers using unsupported NiMoS. 4-propylguaiacol (PG) was found to be the most efficient monomer for stabilizing the reactive lignin intermediates, resulting in a low char yield (3.7%), which was 4 times lower than the char production from Kraft lignin hydrotreatment alone. The suppressed rate of lignin fragment repolymerization can be attributed to the synergistic effect of functional groups like hydroxyl (-OH), methoxy (-OCH3), and propyl (-C3H7) groups present in PG. These groups were found to be able to stabilize the lignin depolymerized fragments and blocked the repolymerization routes enabling efficient lignin depolymerization. It was found that the presence of a co-reactant like PG during the heating period of the reactor acted as a blocking agent facilitating further depolymerization routes. Finally, a reaction network is proposed describing multiple routes of lignin hydroconversion to solid char, lignin-derived monomers, dimers, and oligomers, explaining why the co-processing of pyrolysis oil and Kraft lignin completely suppressed the solid char formation.
  •  
6.
  • Cheah, You Wayne, 1993, et al. (författare)
  • Thermal annealing effects on hydrothermally synthesized unsupported MoS2 for enhanced deoxygenation of propylguaiacol and kraft lignin
  • 2021
  • Ingår i: Sustainable Energy and Fuels. - 2398-4902. ; 5:20, s. 5270-5286
  • Tidskriftsartikel (refereegranskat)abstract
    • Catalytic hydrodeoxygenation (HDO) is an important hydrotreating process that is used to improve the quality of bio-oils to produce biomass-derived fuel components and chemicals. Molybdenum disulfide (MoS2) has been widely used as a catalyst in hydrodesulfurization (HDS) applications for several decades, which can be further improved for effective unsupported catalyst synthesis. Herein, we studied a universally applicable post-annealing treatment to a hydrothermally synthesized MoS2 catalyst towards developing efficient unsupported catalysts for deoxygenation. The effect of the annealing treatment on the catalyst was studied and evaluated for HDO of 4-propylguaiacol (PG) at 300 °C with 50 bar H2 pressure. The annealing of the as-synthesized catalyst under nitrogen flow at 400 °C for 2 h was found to enhance the HDO activity. This enhancement is largely induced by the changes in the microstructure of MoS2 after the annealing in terms of slab length, stacking degree, defect-rich sites and the MoS2 edge-to-corner site ratio. Besides, the effect of hydrothermal synthesis time and acid addition combined with the annealing treatment on the MoS2 catalytic activity was also studied for the same model reaction. The annealed MoS2 with a synthesis time of 12 h under an acidic environment was found to have improved crystallinity and exhibit the highest deoxygenation degree among all the studied catalysts. An acidic environment during the synthesis was found to be crucial in facilitating the growth of MoS2 micelles, resulting in smaller particles that affected the HDO activity. The annealed unsupported MoS2 with the best performance for PG hydrodeoxygenation was further evaluated for the hydrotreatment of kraft lignin and demonstrated a high deoxygenation ability. The results also indicate a catalyst with high activity for deoxygenation and hydrogenation reactions can suppress char formation and favor a high lignin bio-oil yield. This research uncovers the importance of a facile pretreatment on unsupported MoS2 for achieving highly active HDO catalysts.
  •  
7.
  • Cheah, You Wayne, 1993, et al. (författare)
  • Upgrading of triglycerides, pyrolysis oil, and lignin over metal sulfide catalysts: A review on the reaction mechanism, kinetics, and catalyst deactivation
  • 2023
  • Ingår i: Journal of Environmental Chemical Engineering. - : Elsevier BV. - 2213-3437 .- 2213-2929. ; 11:3
  • Forskningsöversikt (refereegranskat)abstract
    • Human activities such as burning fossil fuels for energy production have contributed to the rising global atmospheric CO2 concentration. The search for alternative renewable and sustainable energy sources to replace fossil fuels is crucial to meet the global energy demand. Bio-feedstocks are abundant, carbon-rich, and renewable bioresources that can be transformed into value-added chemicals, biofuels, and biomaterials. The conversion of solid biomass into liquid fuel and their further hydroprocessing over solid catalysts has gained vast interest in industry and academic research in the last few decades. Metal sulfide catalysts, a common type of catalyst being used in the hydroprocessing of fossil feedstocks, have gained great interest due to their low cost, industrial relevance, and easy implementation into the current refining infrastructures. In this review, we aim to provide a comprehensive overview that covers the hydrotreating of various bio-feedstocks like fatty acids, phenolic compounds, pyrolysis oil, and lignin feed using sulfided catalysts. The main objectives are to highlight the reaction mechanism/networks, types of sulfided catalysts, catalyst deactivation, and reaction kinetics involved in the hydrotreating of various viable renewable feedstocks to biofuels. The computational approaches to understand the application of metal sulfides in deoxygenation are also presented. The challenges and needs for future research related to the valorization of different bio-feedstocks into liquid fuels, employing sulfided catalysts, are also discussed in the current work.
  •  
8.
  • Grahn, Mattias, et al. (författare)
  • Small ZSM-5 crystals with low defect density as an effective catalyst for conversion of methanol to hydrocarbons
  • 2020
  • Ingår i: Catalysis Today. - : Elsevier B.V.. - 0920-5861 .- 1873-4308. ; 345, s. 136-146
  • Tidskriftsartikel (refereegranskat)abstract
    • This work presents the synthesis of nearly defect-free ZSM-5 nanosized crystals, prepared in fluoride medium by seeding with silicalite-1. This material was carefully characterized and its catalytic performances in the methanol to hydrocarbons (MTH) reaction were assessed. Such fluoride-based material was compared to a reference ZSM-5, produced through a conventional alkaline synthesis but from the same seeding. Despite both the materials show closely identical morphology and they have a comparable acid site population, the catalyst prepared using the fluoride route showed significantly longer lifetime in MTH compared to the catalyst prepared using conventional synthesis at high pH. The slower deactivation for the samples prepared using the fluoride route was ascribed, thanks to a thorough in situ IR spectroscopy study, to its lower density of internal defects. According to the UV-Raman characterization of coke on the spent catalyst, the fluoride-based ZSM-5 catalyst produces less molecular coke species, most probably because of the absence of enlarged cavities/channels as due to the presence of internal defects. On the basis of these observations, the deactivation mechanism in the ZSM-5 synthesized by fluoride medium could be mostly related to the deposition of an external layer of bulk coke, whereas in the alkali-synthesized catalyst an additional effect from molecular coke accumulating within the porous network accelerates the deactivation process.
  •  
9.
  • Hedlund, Jonas, et al. (författare)
  • Controlling diffusion resistance, selectivity and deactivation of ZSM-5 catalysts by crystal thickness and defects
  • 2022
  • Ingår i: Journal of Catalysis. - : Elsevier. - 0021-9517 .- 1090-2694. ; 410, s. 320-332
  • Tidskriftsartikel (refereegranskat)abstract
    • A systematic investigation of two sets of defect free and defective ZSM-5 crystals with controlled thickness (T) between 30 and 400 nm and of their performances in methanol conversion was reported for the first time in the present work. The defect free ZSM-5 crystals with a thickness of 35 nm are by far the smallest ever reported and displayed superior activity, stability and selectivity to slower diffusing compounds, which resulted in high yield of e.g. gasoline and the 1,2,4-trimethylbenzene isomer with high octane number, as compared to the other studied catalysts. Almost only products forming in the zeolite pores were detected and consequently, the external surface must be nearly inactive. Strong correlations between T and deactivation rate were observed. Thick crystals deactivated much faster than thin crystals, probably due to formation of carbon species in the zeolite pores, which results in pronounced percolation effects and faster deactivation of the former. At comparable thickness, crystals with defects deactivated much faster than defect free crystals, due to formation of additional small molecular coke species in the former. Strong correlations between T and selectivity were also observed and assigned to control of diffusion resistance by crystal thickness.
  •  
10.
  • Janosik, Tomasz, et al. (författare)
  • Derivatizing of Fast Pyrolysis Bio-Oil and Coprocessing in Fixed Bed Hydrotreater
  • 2022
  • Ingår i: Energy & Fuels. - : American Chemical Society. - 0887-0624 .- 1520-5029. ; 36:15, s. 8274-8287
  • Tidskriftsartikel (refereegranskat)abstract
    • In several countries forest-based biofuels are being developed and to some extent also deployed. Fast pyrolysis bio-oil produced from, for example, sawdust, has now been coprocessed in fluid catalytic cracking refinery units in a number of commercial trials. However, this application is limited to about 10% of the total feed, and coprocessing in conventional fixed bed hydrotreaters is necessary to reach the high potential with this feedstock. Feeding and upgrading of fast pyrolysis bio-oil in a fixed bed reactor configuration is still problematic due to the inherent bio-oil properties. Stabilization of reactive compounds in fast pyrolysis bio-oil and mild hydrotreatment in a separate refining unit prior to refinery integration has therefore been developed the past decade. Another approach, presented here, involves complete dewatering of fast pyrolysis bio-oil by azeotropic distillation using mesityl oxide as the solvent, followed by conversion of the abundant hydroxyl compounds via mixed anhydride esterification methodology using an external source of mixed carboxylic acids of different chain lengths originating from renewable tall oil fatty acids, providing a lipophilic feed component. Dewatering and derivatizing were carried out in reactors up to 50 dm3 with a mass ratio of fast pyrolysis bio-oil to tall oil fatty acid of 10:13. The produced lipophilic oils were miscible with a petroleum light gas oil fraction and exhibited superior stability even after accelerated aging at elevated temperature (80 °C). The derivatized oils were thus mixed with light gas oil, with a proportion of 30 wt % derivatized oil in final blends and hydrotreated continuously in pilot fixed bed reactors for 14 days at 4 operating conditions without plugging or excessive exotherms. The test conditions were varied; the reactor pressure was either 55 or 80 bar, temperature 380 or 400 °C, and liquid hourly space velocity either 1 or 2 h-1 during the hydrotreatment. Successful hydrodeoxygenation and desulfurization were accomplished, whereas an increasing nitrogen concentration could be observed in the liquid products with the particular catalyst and reaction conditions employed. The observed hydrogen consumption (15-20 g/kg feed) was compared with the stoichiometric consumption for direct deoxygenation and with typical consumptions for industrial hydrotreated vegetable oil processing. The measured biogenic carbon content in hydrotreated liquid products (26.7%) agreed extremely well with the calculated biogenic carbon content in the hydrotreating feed (26.6%) that consisted of the blend of derivatized oil and petroleum light gas oil. The overall results are very promising since simple unit operations can be used to produce derivatized fast pyrolysis bio-oils that do not need additional standalone hydrotreating units but can be coprocessed in existing ones
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy