SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Öquist Gunnar 1941 ) srt2:(1995-1999)"

Sökning: WFRF:(Öquist Gunnar 1941 ) > (1995-1999)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Krivosheeva, A, et al. (författare)
  • Cold acclimation and photoinhibition of photosynthesis in Scots pine
  • 1996
  • Ingår i: Planta. - 0032-0935 .- 1432-2048. ; 200:3, s. 296-305
  • Tidskriftsartikel (refereegranskat)abstract
    • Cold acclimation of Scots pine did not affect the susceptibility of photosynthesis to photoinhibition. Cold acclimation did however cause a suppression of the rate of CO2 uptake, and at given light and temperature conditions a larger fraction of the photosystem Il reaction centres were closed in cold-acclimated than in nonacclimated pine. Therefore, when assayed at the level of photosystem II reaction centres, i.e. in relation to the degree of photosystem closure, cold acclimation caused a significant increase in resistance to photoinhibition; at given levels of photosystem II closure the resistance to photoinhibition was higher after cold acclimation. This was particularly evident in measurements at 20 degrees C. The amounts and activities of the majority of analysed active oxygen scavengers were higher after cold acclimation. We suggest that this increase in protective enzymes and compounds, particularly superoxide dismutase, ascorbate peroxidase, glutathione reductase and ascorbate of the chloroplasts, enables Scots pine to avoid excessive photoinhibition of photosynthesis despite partial suppression of photosynthesis upon cold acclimation. An increased capacity for light-induced de-epoxidation of violaxanthin to zeaxanthin upon cold acclimation may also be of significance.
  •  
2.
  • Hurry, Vaughan, 1960-, et al. (författare)
  • Cold-hardening results in increased activity of enzymes involved in carbon metabolism in leaves of winter rye (Secale-Cereale L)
  • 1995
  • Ingår i: Planta. - 0032-0935 .- 1432-2048. ; 195:4, s. 554-562
  • Tidskriftsartikel (refereegranskat)abstract
    • Light- and CO2-saturated photosynthesis of nonhardened rye (Secale cereale L. cv. Musketeer) was reduced from 18.10 to 7.17 mu mol O-2.m(-2).s(-1) when leaves were transferred from 20 to 5 degrees C for 30 min. Following cold-hardening at 5 degrees C for ten weeks, photosynthesis recovered to 15.05 mu mol O-2.m(-2).s(-1), comparable to the non-hardened rate at 20 degrees C. Recovery of photosynthesis was associated with increases in the total activity and activation of enzymes of the photosynthetic carbon-reduction cycle and of sucrose synthesis. The total hexose-phosphate pool increase by 30% and 120% for nonhardened and cold-hardened leaves respectively when measured at 5 degrees C. The large increase in esterified phosphate in cold-hardened leaves occurred without a limitation in inorganic phosphate supply. In contrast, the much smaller increase in esterified phosphate in nonhardened leaves was associated with an inhibition of ribulose-1,5-bisphosphate carboxylase/oxygenase and sucrose-phosphate synthase activation. It is suggested that the large increases in hexose phosphates in cold-hardened leaves compensates for the higher substrate threshold concentrations needed for enzyme activation at low temperatures. High substrate concentrations could also compensate for the kinetic limitations imposed by product inhibition from the accumulation of sucrose at 5 degrees C. Nonhardened leaves appear to be unable to compensate in this fashion due to an inadequate supply of inorganic phosphate.
  •  
3.
  • Hurry, Vaughan, 1960-, et al. (författare)
  • Effect of cold hardening on the components of respiratory decarboxylation in the light and in the dark in leaves of winter rye
  • 1996
  • Ingår i: Plant Physiology. - 0032-0889 .- 1532-2548. ; 111:3, s. 713-719
  • Tidskriftsartikel (refereegranskat)abstract
    • In the dark, all decarboxylation reactions are associated with the oxidase reactions of mitochondrial electron transport. In the light, photorespiration is also active in photosynthetic cells. In winter rye (Secale cereale L.), cold hardening resulted in a P-fold increase in the rate of dark respiratory CO2 release from leaves compared with nonhardened (NH) controls. However, in the light, NH and cold-hardened (CH) leaves had comparable rates of oxidase decarboxylation and total intracellular decarboxylation, Furthermore, whereas CH leaves showed similar rates of total oxidase decarboxylation in the dark and light, NH leaves showed a 2-fold increase in total oxidase activity in the light compared with the dark. Light suppressed oxidase decarboxylation of end products of photosynthesis 2-fold in NH leaves and 3-fold in CH leaves in air. However, in high-CO2, light did not suppress the oxidase decarboxylation of end products. Thus, the decrease in oxidase decarboxylation of end products observed in the light and in air reflected glycolate-cycle-related inhibition of tricarboxylic acid cycle activity. We also showed that the glycolate cycle was involved in the decarboxylation of the end products of photosynthesis in both NH and CH leaves, suggesting a flow of fixed carbon out of the starch pool in the light.
  •  
4.
  • Hurry, Vaughan M., 1960-, et al. (författare)
  • Cold hardening of spring and winter-wheat and rape results in differential-effects on growth, carbon metabolism, and carbohydrate content
  • 1995
  • Ingår i: Plant Physiology. - 0032-0889 .- 1532-2548. ; 109:2, s. 697-706
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of long-term (months) exposure to low temperature (5 degrees C) on growth, photosynthesis, and carbon metabolism was studied in spring and winter cultivars of wheat (Triticum aestivum) and rape (Brassica napus). Cold-grown winter rape and winter wheat maintained higher net assimilation rates and higher in situ CO2 exchange rates than the respective cold-grown spring cultivars. In particular, the relative growth rate of spring rape declined over time at low temperature, and this was associated with a 92% loss in in situ CO2 exchange rates. Associated with the high photosynthetic rates of cold-grown winter cultivars was a P-fold increase per unit of protein in both stromal and cytosolic fructose-1,6-bisphosphatase activity and a 1.5- to 2-fold increase in sucrose-phosphate synthase activity. Neither spring cultivar increased enzyme activity on a per unit of protein basis. We suggest that the recovery of photosynthetic capacity at low temperature and the regulation of enzymatic activity represent acclimation in winter cultivars. This allows these overwintering herbaceous annuals to maximize the production of sugars with possible cryoprotective function and to accumulate sufficient carbohydrate storage reserves to support basal metabolism and regrowth in the spring.
  •  
5.
  • Hurry, Vaughan, 1960-, et al. (författare)
  • Mitochondria contribute to increased photosynthetic capacity of leaves of winter rye (Secale-Cereale L) following cold-hardening
  • 1995
  • Ingår i: Plant, Cell and Environment. - 0140-7791 .- 1365-3040. ; 18:1, s. 69-76
  • Tidskriftsartikel (refereegranskat)abstract
    • Cold-hardening of winter rye (Secale cereale L. cv. Musketeer) increased dark respiration from -2.2 to -3.9 mu mol O-2 m(-2)s(-1) and doubled light- and CO2-saturated photosynthesis at 20 degrees C from 18.1 to 37.0 mu mol O-2 m(-2) s(-1). We added oligomycin at a concentration that specifically inhibits oxidative phosphorylation to see whether the observed increase in dark respiration reflected an increase in respiration in the light, and whether this contributed to the enhanced photosynthesis of cold-hardened leaves, Oligomycin inhibited light- and CO2-saturated rates of photosynthesis in non-hardened and cold-hardened leaves by 14 and 25%, respectively, and decreased photochemical quenching of chlorophyll a fluorescence to a greater degree in cold-hardened than in non-hardened leaves, These data indicate an increase both in the rate of respiration in the light, and in the importance of respiration to photosynthesis following cold-hardening, Analysis of metabolite pools indicated that oligomycin inhibited photosynthesis by limiting regeneration of ribulose-1,5-bisphosphate, This limitation was particularly severe in cold-hardened leaves, and the resulting low 3-phosphoglycerate pools led to a feed-forward inhibition of sucrose-phosphate synthase activity, Thus, it does not appear that oxidative phosphorylation supports the increase in photosynthetic O-2 evolution following cold-hardening by increasing the availability of cytosolic ATP, The data instead support the hypothesis that the mitochondria function in the light by using the reducing equivalents generated by nan-cyclic photosynthetic electron transport.
  •  
6.
  • Ottander, Christina, 1962-, et al. (författare)
  • Seasonal-changes in photosystem-II organiszation and pigment composition in Pinus-Sylvestris
  • 1995
  • Ingår i: Planta. - 0032-0935 .- 1432-2048. ; 197:1, s. 176-183
  • Tidskriftsartikel (refereegranskat)abstract
    • Conifers of the boreal zone encounter considerable combined stress of low temperature and high light during winter, when photosynthetic consumption of excitation energy is blocked. In the evergreen Pinus sylvestris L. these stresses coincided with major seasonal changes in photosystem II (PSII) organisation and pigment composition. The earliest changes occurred in September, before any freezing stress, with initial losses of chlorophyll, the D1-protein of the PSTI reaction centre and of PSII light-harvesting-complex (LHC Il) proteins. In October there was a transient increase in F-o, resulting from detachment of the light-harvesting antennae as reaction centres lost D1. The D1-protein content eventually decreased to 90%, reaching a minimum by December, but PSII photochemical efficiency [variable fluorescence (F-v)/maximum fluorescence (F-m)] did not reach the winter minimum until mid-February. The carotenoid composition varied seasonally with a twofold increase in lutein and the carotenoids of the xanthophyll cycle during winter, while the epoxidation state of the xanthophylls decreased from 0.9 to 0.1 from October to January. The loss of chlorophyll was complete by October and during winter much of the remaining chlorophyll was reorganised in aggregates of specific polypeptide composition, which apparently efficiently quench excitation energy through non-radiative dissipation. The timing of the autumn and winter changes indicated that xanthophyll de-epoxidation correlates with winter quenching of chlorophyll fluorescence while the drop in photochemical efficiency relates more to loss of D1-protein. In April and May recovery of the photochemistry of PSII, protein synthesis, pigment rearrangements and zeaxanthin epoxidation occurred concomitantly. Indoor recovery of photosynthesis in winter-stressed branches under favourable conditions was completed within 3 d, with rapid increases in F-o, the epoxidation state of the xanthophylls and in light-harvesting polypeptides, followed by recovery of D1-protein content and F-v/F-m, all without net increase in chlorophyll. The fall and winter reorganisation allow Pinus sylvestris is to maintain a large stock of chlorophyll in a quenched, photoprotected state, allowing rapid recovery of photosynthesis in spring.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy