SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Österberg Carin 1987) "

Search: WFRF:(Österberg Carin 1987)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mink, Janos, et al. (author)
  • Vibrational properties of -KSiH3 and -RbSiH3 : a combined Raman and inelastic neutron scattering study
  • 2017
  • In: Journal of Raman Spectroscopy. - : Wiley. - 0377-0486 .- 1097-4555. ; 48:2, s. 284-291
  • Journal article (peer-reviewed)abstract
    • The hydrogen storage materials ASiH(3) (A=K and Rb) represent complex metal hydrides built from metal cations and pyramidal SiH3- ions. At room temperature, SiH3- moieties are randomly oriented because of dynamical disorder (-modifications). At temperatures below 200K, ASiH(3) exist as ordered low-temperature () modifications. The vibrational properties of -ASiH(3) were characterized by a combination of Raman spectroscopy and inelastic neutron scattering. Internal modes of SiH3- are observed in the spectral range 1800-1900cm(-1) (stretching modes) and 890-1000cm(-1) (bending modes). External modes are observed below 500cm(-1). Specifically, SiH3- librations are between 300-450cm(-1) and 270-400cm(-1) for A=K and Rb, respectively, SiH3- translations are between 95 and 160cm(-1), K+ translations are in the range 60-100cm(-1) and Rb+ translations in the range 50-70cm(-1). The red-shift of libration modes for A=Rb is associated with a 15-30% reduction of the libration force constants of SiH3- ions in -RbSiH3. This correlates with a lower temperature for the - order-disorder phase transition (278 vs 298K). Libration modes become significantly anharmonic with increasing temperature but are maintained up to at least 200K. The vibrational properties of ASiH(3) compare well to those of alkali metal borohydrides ABH(4) (A=Na-Cs).
  •  
2.
  • Nedumkandathil, Reji, et al. (author)
  • Investigation of the Order–Disorder Rotator Phase Transition in KSiH3 and RbSiH3
  • 2017
  • In: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 121:9, s. 5241-5252
  • Journal article (peer-reviewed)abstract
    • The β–α (order–disorder) transition in the silanides ASiH3 (A = K, Rb) was investigated by multiple techniques, including neutron powder diffraction (NPD, on the corresponding deuterides), Raman spectroscopy, heat capacity (Cp), solid-state 2H NMR spectroscopy, and quasi-elastic neutron scattering (QENS). The crystal structure of α-ASiH3 corresponds to a NaCl-type arrangement of alkali metal ions and randomly oriented, pyramidal, SiH3– moieties. At temperatures below 200 K ASiH3 exist as hydrogen-ordered (β) forms. Upon heating the transition occurs at 279(3) and 300(3) K for RbSiH3 and KSiH3, respectively. The transition is accompanied by a large molar volume increase of about 14%. The Cp(T) behavior is characteristic of a rotator phase transition by increasing anomalously above 120 K and displaying a discontinuous drop at the transition temperature. Pronounced anharmonicity above 200 K, mirroring the breakdown of constraints on SiH3– rotation, is also seen in the evolution of atomic displacement parameters and the broadening and eventual disappearance of libration modes in the Raman spectra. In α-ASiH3, the SiH3– anions undergo rotational diffusion with average relaxation times of 0.2–0.3 ps between successive H jumps. The first-order reconstructive phase transition is characterized by a large hysteresis (20–40 K). 2H NMR revealed that the α-form can coexist, presumably as 2–4 nm (sub-Bragg) sized domains, with the β-phase below the phase transition temperatures established from Cp measurements. The reorientational mobility of H atoms in undercooled α-phase is reduced, with relaxation times on the order of picoseconds. The occurrence of rotator phases α-ASiH3 near room temperature and the presence of dynamical disorder even in the low-temperature β-phases imply that SiH3– ions are only weakly coordinated in an environment of A+ cations. The orientational flexibility of SiH3– can be attributed to the simultaneous presence of a lone pair and (weakly) hydridic hydrogen ligands, leading to an ambidentate coordination behavior toward metal cations.
  •  
3.
  • Eklöf-Österberg, Carin, 1987, et al. (author)
  • Dynamics of Hydride Ions in Metal Hydride-Reduced BaTiO3 Samples Investigated with Quasielastic Neutron Scattering
  • 2019
  • In: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 123:4, s. 2019-2030
  • Journal article (peer-reviewed)abstract
    • Perovskite-type oxyhydrides, BaTiO3-xHx, have been recently shown to exhibit hydride-ion (H-) conductivity at elevated temperatures, but the underlying mechanism of hydride-ion conduction and how it depends on temperature and oxygen vacancy concentration remains unclear. Here, we investigate, through the use of quasielastic neutron scattering techniques, the nature of the hydride-ion dynamics in three metal hydride-reduced BaTiO3 samples that are characterized by the simultaneous presence of hydride ions and oxygen vacancies. Measurements of elastic fixed window scans upon heating reveal the presence of quasielastic scattering due to hydride-ion dynamics for temperatures above ca. 200 K. Analyses of quasielastic spectra measured at low (225 and 250 K) and high (400-700 K) temperature show that the dynamics can be adequately described by established models of jump diffusion. At low temperature, <= 250 K, all of the models feature a characteristic jump distance of about 2.8 angstrom, thus of the order of the distance between neighboring oxygen atoms or oxygen vacancies of the perovskite lattice and a mean residence time between successive jumps of the order of 0.1 ns. At higher temperatures, >400 K, the jump distance increases to about 4 angstrom, thus of the order of the distance between next-nearest neighboring oxygen atoms or oxygen vacancies, with a mean residence time of the order of picoseconds. A diffusion constant D was computed from the data measured at low and high temperatures, respectively, and takes on values of about 0.4 X 10(-6) cm(-2) s(-1) at the lowest applied temperature of 225 K and between ca. 20 X 10(-6) and 100 X 10(-6) cm(-2) s(-1) at temperatures between 400 and 700 K. Activation energies E-a were derived from the measurements at high temperatures and take on values of about 0.1 eV and show a slight increase with increasing oxygen vacancy concentration.
  •  
4.
  • Eklöf-Österberg, Carin, 1987 (author)
  • Structure-dynamics relationships in perovskite oxyhydrides and alkali silanides
  • 2019
  • Doctoral thesis (other academic/artistic)abstract
    • This thesis focuses on investigations of the local structure and dynamics of two classes of hydrogen-containing, energy relevant, materials; perovskite type oxyhydrides BaTiO3-xHx and alkali silanides ASiH3 (A = K and Rb). In the area of oxyhydrides, which are of relevance for the development of electrolytes in fuel cells and batteries, the aim is to elucidate the dynamics and electronic character of the hydrogen species in the materials. This is of great importance for developing new efficient synthesis routes and novel applications for oxyhydrides. The main tools of choice for these investigations are quasielastic and inelastic neutron scattering (QENS and INS, respectively). The results show that the hydride ion exhibits a long-range diffusion with a jump length corresponding to nearest neighbour (NN) jumps at low temperatures (225–250 K) and second nearest neighbour (2NN) jumps at high temperatures (400–700 K). Importantly, the hydride ion diffusivity was shown to be mediated by oxygen vacancies present in the material. Furthermore, the results from INS combined with density functional theory calculations show that the extra electron, originating from the hydride ion, forms a delocalised bandstate, as opposed to a localised polaronic state as suggested elsewhere. In the area of alkali silanides, which are of interest as hydrogen storage materials, the aim was to investigate the origin of the low entropy variation that these materials exhibit during the absorption/desorption process, using QENS. The results point towards complex dynamics, characterised by a quasi-spherical localised jump diffusion with 24 different preferred sites at high temperatures and slower C3 axis rotations as the dynamical motions starts to "freeze in" closer to the phase transition at lower temperatures. Specifically, at high temperatures the SiH3- ions are almost freely rotating, similar to how the ions behaves in a gas, which explains the origin of the low entropy variation and should be something to strive for when developing new hydrogen storage materials.
  •  
5.
  • Eklöf-Österberg, Carin, 1987, et al. (author)
  • The role of oxygen vacancies on the vibrational motions of hydride ions in the oxyhydride of barium titanate
  • 2020
  • In: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 8:13, s. 6360-6371
  • Journal article (peer-reviewed)abstract
    • Perovskite-type oxyhydrides, BaTiO3-xHx, represent a novel class of hydride ion conducting materials of interest for several electrochemical applications, but fundamental questions surrounding the defect chemistry and hydride ion transport mechanism remain unclear. Here we report results from powder X-ray diffraction, thermal gravimetric analysis, nuclear magnetic resonance spectroscopy, inelastic neutron scattering (INS), and density functional theory (DFT) simulations on three metal hydride reduced BaTiO3 samples characterized by the simultaneous presence of hydride ions and oxygen vacancies. The INS spectra are characterized by two predominating bands at around 114 (omega(perpendicular to)) and 128 (omega(parallel to)) meV, assigned as fundamental Ti-H vibrational modes perpendicular and parallel to the Ti-H-Ti bond direction, respectively, and four additional, weaker, bands at around 99 (omega(1)), 110 (omega(2)), 137 (omega(3)) and 145 (omega(4)) meV that originate from a range of different local structures associated with different configurations of the hydride ions and oxygen vacancies in the materials. Crucially, the combined analyses of INS and DFT data confirm the presence of both nearest and next-nearest neighbouring oxygen vacancies to the hydride ions. This supports previous findings from quasielastic neutron scattering experiments, that the hydride ion transport is governed by jump diffusion dynamics between neighbouring and next-nearest neighbouring hydride ion-oxygen vacancy local structures. Furthermore, the investigation of the momentum transfer dependence of the INS spectrum is used to derive the mean square displacement of the hydride ions, which is shown to be in excellent agreement with the calculations. Analysis of the mean square displacement confirms that the hydrogen vibrational motions are localized in nature and only very weakly affected by the dynamics of the surrounding perovskite structure. This insight motivates efforts to identify alternative host lattices that allow for a less localization of the hydride ions as a route to higher hydride ion conductivities.
  •  
6.
  • Jedvik Granhed, Erik, 1979, et al. (author)
  • Band: Vs. polaron: Vibrational motion and chemical expansion of hydride ions as signatures for the electronic character in oxyhydride barium titanate
  • 2019
  • In: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 7:27, s. 16211-16221
  • Journal article (peer-reviewed)abstract
    • The oxyhydride phase of barium titanate, BaTiO3-xHx, is a mixed hydride ion and electron conductor. The substitution of oxygen with hydrogen to form a hydride ion is accompanied by donation of an electron to the initially empty titanium 3d conduction band. It is not clear, however, whether the electron forms a delocalized state where it is shared among all titanium ions forming a bandstate, or if it localizes on a titanium ion and forms a bound electron polaron. Here, we investigate polaron formation in this material using density-functional theory (DFT) calculations, where the self-interaction error has been corrected by the DFT + U method and the HSE hybrid functional. While calculated formation energies do not provide a conclusive description of the electronic state, a comparison of the results from first-principles phonon calculations with vibrational spectra measured with inelastic neutron scattering (INS) suggests that the electrons form bandstates in bulk BaTiO3-xHx. This is further supported by comparison of the computed chemical expansion of the involved defect species with experimental data of the lattice expansion in the oxyhydride formation. The oxyhydride phase of barium titanate, BaTiO3-xHx, should thus exhibit metallic-like conductivity.
  •  
7.
  • Nedumkandathil, Reji, et al. (author)
  • Hydride Reduction of BaTiO3 ? Oxyhydride Versus O Vacancy Formation
  • 2018
  • In: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 3:9, s. 11426-11438
  • Journal article (peer-reviewed)abstract
    • We investigated the hydride reduction of tetragonal BaTiO3 using the metal hydrides CaH2, NaH, MgH2, NaBH4, and NaAlH4. The reactions employed molar BaTiO3/H ratios of up to 1.8 and temperatures near 600 °C. The air-stable reduced products were characterized by powder X-ray diffraction (PXRD), transmission electron microscopy, thermogravimetric analysis (TGA), and 1H magic angle spinning (MAS) NMR spectroscopy. PXRD showed the formation of cubic products - indicative of the formation of BaTiO3-xHx - except for NaH. Lattice parameters were in a range between 4.005 Å (for NaBH4-reduced samples) and 4.033 Å (for MgH2-reduced samples). With increasing H/BaTiO3 ratio, CaH2-, NaAlH4-, and MgH2-reduced samples were afforded as two-phase mixtures. TGA in air flow showed significant weight increases of up to 3.5% for reduced BaTiO3, suggesting that metal hydride reduction yielded oxyhydrides BaTiO3-xHx with x values larger than 0.5. 1H MAS NMR spectroscopy, however, revealed rather low concentrations of H and thus a simultaneous presence of O vacancies in reduced BaTiO3. It has to be concluded that hydride reduction of BaTiO3 yields complex disordered materials BaTiO3-xHy?(x-y) with x up to 0.6 and y in a range 0.04-0.25, rather than homogeneous solid solutions BaTiO3-xHx. Resonances of (hydridic) H substituting O in the cubic perovskite structure appear in the ?2 to ?60 ppm spectral region. The large range of negative chemical shifts and breadth of the signals signifies metallic conductivity and structural disorder in BaTiO3-xHy?(x-y). Sintering of BaTiO3-xHy?(x-y) in a gaseous H2 atmosphere resulted in more ordered materials, as indicated by considerably sharper 1H resonances.
  •  
8.
  • Österberg, Carin, 1987, et al. (author)
  • Dynamics of Pyramidal SiH3- Ions in ASiH(3) (A = K and Rb) Investigated with Quasielastic Neutron Scattering
  • 2016
  • In: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 120:12, s. 6369-6376
  • Journal article (peer-reviewed)abstract
    • The two alkali silanides ASiH(3) (A = K and Rb) were investigated by means of quasielastic neutron scattering, both below and above the order-disorder phase transition occurring at around 275-300 K. Measurements upon heating show that there is a large change in the dynamics on going through the phase transition, whereas measurements upon cooling reveal a strong hysteresis due to undercooling of the disordered phase. The results show that the dynamics is associated with rotational diffusion of SiH3- anions, adequately modeled by H-jumps among 24 different jump locations radially distributed around the Si atom. The average relaxation time between successive jumps is of the order of subpicoseconds and exhibits a weak temperature dependence with a small difference in activation energy between the two materials, 39(1) meV for KSiH3 and 33(1) meV for RbSiH3. The pronounced SiH3- dynamics explains the high entropy observed in the disordered phase resulting in the low entropy variation for hydrogen absorption/desorption and hence the origin of these materials' favorable hydrogen storage properties.
  •  
9.
  • Österberg, Carin, 1987 (author)
  • Mechanistic aspects of structure and dynamics in perovskite type oxyhydrides and alkali silanides
  • 2016
  • Licentiate thesis (other academic/artistic)abstract
    • This Thesis concerns experimental studies of the two alkali silanides ASiH3 (A = K and Rb) and the recently discovered perovskite type oxyhydrides BaTiO3-xHx (x = 0.14 and 0.40). The alkali silanides ASiH3 (A = K and Rb) are featured by an unusually low enthalpy change over the hydrogen absorption/desorption process, which enables an easy route for hydrogenation and makes them of relevance for hydrogen storage applications. One aim with this thesis is to determine the mechanistic aspects of the structure and hydrogen dynamics that possibly explain this behavior. It is shown that the previously reported structure, featured by a quasi-spherical arrangement with 24 sites of preferred orientations for the hydrogen atoms, can be used as a model for the H dynamics present in the materials.Specifically, the SiH3- species are almost freely rotating, which explains the origin of the lowentropy variation.Perovskite type oxyhydrides BaTiO3-xHx (x = 0.14 and 0.40) represent an emerging class of hydride-ion conducting materials, with properties similar to proton conducting equivalents. However, details of the hydride-ion dynamics are still unknown. Accordingly, this thesis focuses also on investigations of the mechanistic aspects of structure and hydride-ion dynamics in perovskite oxyhydrides, with the aim of developing a generic knowledge of hydrogen dynamics in perovskite materials, relevant for both proton and hydride-ion conductors. Structural and dynamical analysis confirm that the hydride-ions are located on vacantoxygen sites of the perovskite lattice and reveal hydride-ion diffusion on the time-scale of nanoseconds.The main means of investigation are neutron scattering techniques, which are very appropriate in order to study hydrogen dynamics in materials. This will be discussed in detail in this thesis and also the basics of dynamics that is at the center of the investigations.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view