SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Österlund Lars 1967) srt2:(2005-2009)"

Sökning: WFRF:(Österlund Lars 1967) > (2005-2009)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ausen, Dag, et al. (författare)
  • Foresight Biomedical Sensors
  • 2007
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The foresight study on biomedical sensors has addressed different approaches with future use of biomedical sensors in the health care sector, like: How will biomedical sensors shape the healthcare systems of the future? How can they impact the quality and cost of healthcare and what are the business opportunities in the Nordic region?
  •  
2.
  • Andersson, M., et al. (författare)
  • Microemulsion-mediated room-temperature synthesis of high-surface-area rutile and its photocatalytic performance
  • 2007
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 111:18, s. 6789-6797
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanosized titania having the rutile crystalline structure was synthesized at room temperature using a microemulsion-mediated system. The formed rutile particles had a diameter of 3 nm, which corresponds well with the droplet size of the water-in-oil microemulsion used for their preparation. The crystallinity was monitored by both X-ray diffraction (XRD) and electron diffraction, together with dark-field electron microscopy (TEM) and high-resolution TEM. The rutile had a high specific surface area (similar to 300 m(2)/g) according to N-2 adsorption and the BET equation. To our knowledge, this is the highest specific surface area ever reported for rutile. The rutile crystals aligned in a specific crystallographic direction forming elongated aggregates 200-1000 nm in size, as observed by TEM and high-resolution TEM. The titania formation was followed in situ using dynamic light scattering and UV-vis spectroscopy, and together with TEM and XRD performed on samples collected throughout the duration of the titania synthesis, the results gave support for a formation scheme involving the initial formation of amorphous titania followed by crystallization of rutile. The photocatalytic performance of the formed material was evaluated by in situ Fourier transform infrared spectroscopy and compared to that of a rutile sample having a lower specific surface area (similar to 40 m(2)/g). The TEM and formate adsorption experiments revealed that the high-surface-area rutile had a much higher fraction of (101) facets than the low-surface-area sample, which predominantly exposed (110) facets. In particular, a new bidentate formate (mu-formate) species bridge-bonded to the (101) facet could be identified with characteristic bands at 1547 and 1387 cm(-1). The photodegradation rate of this species was found to be similar to the mu-formate species on the (110) facet. However, the overall formate degradation rate was larger on the high-surface-area rutile sample because of a high concentration of the more readily photodegradable monodentate formate (eta(1)-formate) on that sample.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Granqvist, Claes G., et al. (författare)
  • Nanomaterials for benign indoor environments : Electrochromics for “smart windows”, sensors for air quality, and photo-catalysts for air cleaning
  • 2007
  • Ingår i: Solar Energy Materials and Solar Cells. - : Elsevier BV. - 0927-0248 .- 1879-3398. ; 91:4, s. 355-365
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanomaterials can be used in a number of technologies in order to accomplish benign indoor environments. This paper takes a unified view on this problem from a solar-energy-based perspective and specifically considers electrochromics for achieving good day-lighting jointly with energy efficiency, sensors aimed at air quality assessment, and photocatalysis for air cleaning. Recent results, mainly from the authors’ laboratories, are reported for all of these areas.
  •  
7.
  • Hagglund, C, et al. (författare)
  • In situ reactivity and FTIR study of the wet and dry photooxidation of propane on anatase TiO2
  • 2005
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 109:21, s. 10886-10895
  • Tidskriftsartikel (refereegranskat)abstract
    • The photocatalytic oxidation (PCO) of trace amounts of propane (500 ppm) on nanocrystalline anatase TiO2 has been investigated in situ as a function of temperature (T = 318-473 K), humidity (C-H2O = 0-4%), and time by means of mass spectrometry and diffuse reflectance Fourier transform infrared spectroscopy (DRIFT). Propane adsorbs associatively on TiO2 at 318 K in dry air, while at 473 K small amounts of thermal dissociation products appear on the surface. In agreement with previous studies, propane is found primarily to be converted to acetone by reactions with photogenerated oxygen radicals. Various successive reaction paths exist, where the branching depends on the temperature and hydroxylation state of the surface. Under dry conditions at 318 K, acetone oxidation is initially kinetically hindered, while, above 400 K, acetone readily decomposes. The thermally assisted reaction channel leads to detrimental bonding of surface species and inhibition of the catalytic activity. It is manifested by a coloration of the sample and suggested to be coupled to surface reduction. Under humidified conditions, there is an optimum of the PCO in C-H2O and T space, which is estimated to correspond to an equilibrium coverage of one monolayer of H2O (or bilayer). The latter reaction condition also corresponds to sustained high propane conversion and is characterized by rapid establishment of steady state rates. The optimum PCO is discussed in terms of a balance between (i) sustaining enough of a photoactive water monolayer to avoid detrimental bonding of surface species, (ii) allowing reactants to adsorb and access bulk TiO2 photoexcitations, and at the same time (iii) maximizing the thermally assisted decomposition of intermediates.
  •  
8.
  • Kiselev, A., et al. (författare)
  • Adsorption and photocatalytic degradation of diisopropyl fluorophosphate and dimethyl methylphosphonate over dry and wet rutile TiO2
  • 2006
  • Ingår i: Journal of Photochemistry and Photobiology A. - : Elsevier BV. - 1010-6030 .- 1873-2666. ; 184:1-2, s. 125-134
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanosized, crystalline rutile TiO2 was synthesized at room temperature using a microemulsion-mediated system followed by hydrothermal treatment. The formed rutile had a specific surface area of about 40 m(2) g(-1) and the rutile crystals had dimensions of about 10 nm x 150 nm, which aggregated into 200-1000nm sized bundles. The adsorption and photocatalytic degradation of diisopropyl fluorophosphate (DFP) and dimethyl methylphosphonate (DMMP) over these rutile TiO2 nanoparticles in dry and wet synthetic air was investigated by in situ diffuse reflectance Fourier transform infrared (DRIFT) spectroscopy during simulated solar light illumination. The methyl and isopropyl groups do not dissociate upon adsorption on either dry or humidified rutile nanoparticles. The F atom in DFP is, however, easily hydrolyzed and is readily dissociated upon interaction with hydroxyls on the TiO2 surfaces and leads to a destabilization of the DFP molecule. The initial solar light induced photodegradation rate for DFP and DMMP is 5.9 x 10(-4) and 1.0 x 10(-4) s(-1) in dry conditions and 8.1 x 10(-4) and 0.7 x 10(-4) s(-1) in wet conditions (corresponding to 2-3 monolayers (ML) water coverage), respectively. The main intermediate partial oxidation surface products are found to be surface bound formate-carboxylate-carbonate (R-COO-) and phosphate (R-POO-) species. Among them eta(1)-coordinated acetone and mu-formate, bicarbonate, and bidentate R-POO- moieties are detected. These surface species accumulate on the surface during the entire illumination period (60 min), and lead to a decreased total oxidation rate. Controlled humidification of the rutile surface leads to a reduction of the concentration of R-COO- intermediates, while at the same time maintaining approximately the same rate of DFP and DMMP photooxidation. The latter is due to blocking of Ti surface cation sites, which prevents the formation of strongly bonded surface compounds, in particular mu-coordinated R-COO- and R-POO- species. The findings show that, it is possible to optimize the sustained photocatalytic degradation of organic phosphorous compounds by controlled humidification of the reaction gas. (c) 2006 Elsevier B.V. All rights reserved.
  •  
9.
  • Kiselev, A, et al. (författare)
  • Solar light decomposition of DFP on the surface of anatase and rutile TiO2 prepared by hydrothermal treatment of microemulsions
  • 2005
  • Ingår i: Surface Science. - : Elsevier BV. - 0039-6028 .- 1879-2758. ; 584:1, s. 98-105
  • Tidskriftsartikel (refereegranskat)abstract
    • The photocatalytic decomposition of diisopropylfluorophosphate (DFP) over nanostructured anatase and rutile TiO2 powder was investigated by FTIR and XPS. Upon irradiation with artificial solar light DFP decomposed on both polymorphs as evidenced by FTIR. For both crystalline structures acetone and subsequently coordinated formate and carbonate were observed on the surface during the photocatalytic reaction is the isopropyl groups dissociated from DFP. XPS revealed that small amounts of phosphates and inorganic fluoride (Ti-F) gradually built up on both TiO2 surfaces, while organic F was present only on the rutile phase. From repeated cycles of intermittent DFP adsorption and irradiation measurements, the decomposition rates and formation of residuals on the surface were deduced. It was found that the overall oxidation yield is higher on anatase than rutile. The oxidation rate decreases with increasing irradiation time. an effect that is more pronounced on rutile. We find that both the difference between the polymorphs and the initial decrease of the oxidation yield can largely be explained by variations in surface area rather than poisoning by POx or F species. In particular, we observe a dramatic decrease of the specific area or rutile as a function of photocatalytic oxidation cycle. (c) 2005 Elsevier B.V. All rights reserved.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy