SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Österlund Tobias 1984) srt2:(2020-2024)"

Sökning: WFRF:(Österlund Tobias 1984) > (2020-2024)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berglund, Fanny, et al. (författare)
  • Comprehensive screening of genomic and metagenomic data reveals a large diversity of tetracycline resistance genes
  • 2020
  • Ingår i: Microbial genomics. - : Microbiology Society. - 2057-5858. ; 6:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Tetracyclines are broad-spectrum antibiotics used to prevent or treat a variety of bacterial infections. Resistance is often mediated through mobile resistance genes, which encode one of the three main mechanisms: active efflux, ribosomal target protection or enzymatic degradation. In the last few decades, a large number of new tetracycline-resistance genes have been discovered in clinical settings. These genes are hypothesized to originate from environmental and commensal bacteria, but the diversity of tetracycline-resistance determinants that have not yet been mobilized into pathogens is unknown. In this study, we aimed to characterize the potential tetracycline resistome by screening genomic and metagenomic data for novel resistance genes. By using probabilistic models, we predicted 1254 unique putative tetracycline resistance genes, representing 195 gene families (<70% amino acid sequence identity), whereof 164 families had not been described previously. Out of 17 predicted genes selected for experimental verification, 7 induced a resistance phenotype in an Escherichia coli host. Several of the predicted genes were located on mobile genetic elements or in regions that indicated mobility, suggesting that they easily can be shared between bacteria. Furthermore, phylogenetic analysis indicated several events of horizontal gene transfer between bacterial phyla. Our results also suggested that acquired efflux pumps originate from proteobacterial species, while ribosomal protection genes have been mobilized from Firmicutes and Actinobacteria. This study significantly expands the knowledge of known and putatively novel tetracycline resistance genes, their mobility and evolutionary history. The study also provides insights into the unknown resistome and genes that may be encountered in clinical settings in the future.
  •  
2.
  • Buongermino Pereira, Mariana, 1982, et al. (författare)
  • A comprehensive survey of integron-associated genes present in metagenomes
  • 2020
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundIntegrons are genomic elements that mediate horizontal gene transfer by inserting and removing genetic material using site-specific recombination. Integrons are commonly found in bacterial genomes, where they maintain a large and diverse set of genes that plays an important role in adaptation and evolution. Previous studies have started to characterize the wide range of biological functions present in integrons. However, the efforts have so far mainly been limited to genomes from cultivable bacteria and amplicons generated by PCR, thus targeting only a small part of the total integron diversity. Metagenomic data, generated by direct sequencing of environmental and clinical samples, provides a more holistic and unbiased analysis of integron-associated genes. However, the fragmented nature of metagenomic data has previously made such analysis highly challenging.ResultsHere, we present a systematic survey of integron-associated genes in metagenomic data. The analysis was based on a newly developed computational method where integron-associated genes were identified by detecting their associated recombination sites. By processing contiguous sequences assembled from more than 10 terabases of metagenomic data, we were able to identify 13,397 unique integron-associated genes. Metagenomes from marine microbial communities had the highest occurrence of integron-associated genes with levels more than 100-fold higher than in the human microbiome. The identified genes had a large functional diversity spanning over several functional classes. Genes associated with defense mechanisms and mobility facilitators were most overrepresented and more than five times as common in integrons compared to other bacterial genes. As many as two thirds of the genes were found to encode proteins of unknown function. Less than 1% of the genes were associated with antibiotic resistance, of which several were novel, previously undescribed, resistance gene variants.ConclusionsOur results highlight the large functional diversity maintained by integrons present in unculturable bacteria and significantly expands the number of described integron-associated genes.
  •  
3.
  • Dolatabadi, Soheila, et al. (författare)
  • FUS-DDIT3 Fusion Oncoprotein Expression Affects JAK-STAT Signaling in Myxoid Liposarcoma
  • 2022
  • Ingår i: Frontiers in Oncology. - : Frontiers Media SA. - 2234-943X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Myxoid liposarcoma is one of the most common sarcoma entities characterized by FET fusion oncogenes. Despite a generally favorable prognosis of myxoid liposarcoma, chemotherapy resistance remains a clinical problem. This cancer stem cell property is associated with JAK-STAT signaling, but the link to the myxoid-liposarcoma-specific FET fusion oncogene FUS-DDIT3 is not known. Here, we show that ectopic expression of FUS-DDIT3 resulted in elevated levels of STAT3 and phosphorylated STAT3. RNA sequencing identified 126 genes that were regulated by both FUS-DDIT3 expression and JAK1/2 inhibition using ruxolitinib. Sixty-six of these genes were connected in a protein interaction network. Fifty-three and 29 of these genes were confirmed as FUS-DDIT3 and STAT3 targets, respectively, using public chromatin immunoprecipitation sequencing data sets. Enriched gene sets among the 126 regulated genes included processes related to cytokine signaling, adipocytokine signaling, and chromatin remodeling. We validated CD44 as a target gene of JAK1/2 inhibition and as a potential cancer stem cell marker in myxoid liposarcoma. Finally, we showed that FUS-DDIT3 interacted with phosphorylated STAT3 in association with subunits of the SWI/SNF chromatin remodeling complex and PRC2 repressive complex. Our data show that the function of FUS-DDIT3 is closely connected to JAK-STAT signaling. Detailed deciphering of molecular mechanisms behind tumor progression opens up new avenues for targeted therapies in sarcomas and leukemia characterized by FET fusion oncogenes.
  •  
4.
  • Johansson, Gustav, et al. (författare)
  • Monitoring circulating tumor DNA during surgical treatment in patients with gastrointestinal stromal tumors
  • 2021
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 20:12, s. 2568-2576
  • Tidskriftsartikel (refereegranskat)abstract
    • The majority of patients diagnosed with advanced gastrointestinal stromal tumors (GISTs) are successfully treated with a combination of surgery and tyrosine kinase inhibitors (TKIs). However, it remains challenging to monitor treatment efficacy and identify relapse early. Here, we utilized a sequencing strategy based on molecular barcodes and developed a GIST-specific panel to monitor tumor-specific and TKI resistance mutations in cell-free DNA and applied the approach to patients undergoing surgical treatment. Thirty-two patients with GISTs were included, and 161 blood plasma samples were collected and analyzed at routine visits before and after surgery and at the beginning, during, and after surgery. Patients were included regardless of their risk category. Our GIST-specific sequencing approach allowed detection of tumor-specific mutations and TKI resistance mutations with mutant allele frequency < 0.1%. Circulating tumor DNA (ctDNA) was detected in at least one timepoint in nine of 32 patients, ranging from 0.04% to 93% in mutant allele frequency. High-risk patients were more often ctDNA positive than other risk groups (P < 0.05). Patients with detectable ctDNA also displayed higher tumor cell proliferation rates (P < 0.01) and larger tumor sizes (P < 0.01). All patients who were ctDNA positive during surgery became negative after surgery. Finally, in two patients who progressed on TKI treatment, we detected multiple resistance mutations. Our data show that ctDNA may become a clinically useful biomarker in monitoring treatment efficacy in patients with high-risk GISTs and can assist in treatment decision making.
  •  
5.
  • Lindén, Malin, et al. (författare)
  • FET fusion oncoproteins interact with BRD4 and SWI/SNF chromatin remodelling complex subtypes in sarcoma
  • 2022
  • Ingår i: Molecular Oncology. - : Wiley. - 1574-7891 .- 1878-0261. ; 16:13, s. 2470-2495
  • Tidskriftsartikel (refereegranskat)abstract
    • FET fusion oncoproteins containing one of the FET (FUS, EWSR1, TAF15) family proteins juxtaposed to alternative transcription-factor partners are characteristic of more than 20 types of sarcoma and leukaemia. FET oncoproteins bind to the SWI/SNF chromatin remodelling complex, which exists in three subtypes: cBAF, PBAF and GBAF/ncBAF. We used comprehensive biochemical analysis to characterize the interactions between FET oncoproteins, SWI/SNF complexes and the transcriptional coactivator BRD4. Here, we report that FET oncoproteins bind all three main SWI/SNF subtypes cBAF, PBAF and GBAF, and that FET oncoproteins interact indirectly with BRD4 via their shared interaction partner SWI/SNF. Furthermore, chromatin immunoprecipitation sequencing and proteomic analysis showed that FET oncoproteins, SWI/SNF components and BRD4 co-localize on chromatin and interact with mediator and RNA Polymerase II. Our results provide a possible molecular mechanism for the FET-fusion-induced oncogenic transcriptional profiles and may lead to novel therapies targeting aberrant SWI/SNF complexes and/or BRD4 in FET-fusion-caused malignancies.
  •  
6.
  • Linder, Anna, et al. (författare)
  • Genomic alterations in ovarian endometriosis and subsequently diagnosed ovarian carcinoma
  • 2024
  • Ingår i: Human Reproduction. - : Oxford University Press. - 0268-1161 .- 1460-2350. ; 39:5, s. 1141-1154
  • Tidskriftsartikel (refereegranskat)abstract
    • STUDY QUESTION: Can the alleged association between ovarian endometriosis and ovarian carcinoma be substantiated by genetic analysis of endometriosis diagnosed prior to the onset of the carcinoma?SUMMARY ANSWER: The data suggest that ovarian carcinoma does not originate from ovarian endometriosis with a cancer-like genetic profile; however, a common precursor is probable.WHAT IS KNOWN ALREADY: Endometriosis has been implicated as a precursor of ovarian carcinoma based on epidemiologic studies and the discovery of common driver mutations in synchronous disease at the time of surgery. Endometrioid ovarian carcinoma and clear cell ovarian carcinoma are the most common endometriosis-associated ovarian carcinomas (EAOCs).STUDY DESIGN, SIZE, DURATION: The pathology biobanks of two university hospitals in Sweden were scrutinized to identify women with surgically removed endometrioma who subsequently developed ovarian carcinoma (1998-2016). Only 45 archival cases with EAOC and previous endometriosis were identified and after a careful pathology review, 25 cases were excluded due to reclassification into non-EAOC (n = 9) or because ovarian endometriosis could not be confirmed (n = 16). Further cases were excluded due to insufficient endometriosis tissue or poor DNA quality in either the endometriosis, carcinoma, or normal tissue (n = 9). Finally 11 cases had satisfactory DNA from all three locations and were eligible for further analysis.PARTICIPANTS/MATERIALS, SETTING, METHODS: Epithelial cells were collected from formalin-fixed and paraffin-embedded (FFPE) sections by laser capture microdissection (endometrioma n = 11) or macrodissection (carcinoma n = 11) and DNA was extracted. Normal tissue from FFPE sections (n = 5) or blood samples collected at cancer diagnosis (n = 6) were used as the germline controls for each included patient. Whole-exome sequencing was performed (n = 33 samples). Somatic variants (single-nucleotide variants, indels, and copy number alterations) were characterized, and mutational signatures and kataegis were assessed. Microsatellite instability and mismatch repair status were confirmed with PCR and immunohistochemistry, respectively.MAIN RESULTS AND THE ROLE OF CHANCE: The median age for endometriosis surgery was 42 years, and 54 years for the subsequent ovarian carcinoma diagnosis. The median time between the endometriosis and ovarian carcinoma was 10 (7-30) years. The data showed that all paired samples harbored one or more shared somatic mutations. Non-silent mutations in cancer-associated genes were frequent in endometriosis; however, the same mutations were never observed in subsequent carcinomas. The degree of clonal dominance, demonstrated by variant allele frequency, showed a positive correlation with the time to cancer diagnosis (Spearman's rho 0.853, P < 0.001). Mutations in genes associated with immune escape were the most conserved between paired samples, and regions harboring these genes were frequently affected by copy number alterations in both sample types. Mutational burdens and mutation signatures suggested faulty DNA repair mechanisms in all cases.LARGE SCALE DATA: Datasets are available in the supplementary tables.LIMITATIONS, REASONS FOR CAUTION: Even though we located several thousands of surgically removed endometriomas between 1998 and 2016, only 45 paired samples were identified and even fewer, 11 cases, were eligible for sequencing. The observed high level of intra- and inter-heterogeneity in both groups (endometrioma and carcinoma) argues for further studies of the alleged genetic association.WIDER IMPLICATIONS OF THE FINDINGS: The observation of shared somatic mutations in all paired samples supports a common cellular origin for ovarian endometriosis and ovarian carcinoma. However, contradicting previous conclusions, our data suggest that cancer-associated mutations in endometriosis years prior to the carcinoma were not directly associated with the malignant transformation. Rather, a resilient ovarian endometriosis may delay tumorigenesis. Furthermore, the data indicate that genetic alterations affecting the immune response are early and significant events.STUDY FUNDING/COMPETING INTEREST(S): The present work has been funded by the Sjöberg Foundation (2021-01145 to K.S.; 2022-01-11:4 to A.S.), Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (965552 to K.S.; 40615 to I.H.; 965065 to A.S.), Swedish Cancer Society (21-1848 to K.S.; 21-1684 to I.H.; 22-2080 to A.S.), BioCARE-A Strategic Research Area at Lund University (I.H. and S.W.-F.), Mrs Berta Kamprad's Cancer Foundation (FBKS-2019-28, I.H.), Cancer and Allergy Foundation (10381, I.H.), Region Västra Götaland (A.S.), Sweden's Innovation Agency (2020-04141, A.S.), Swedish Research Council (2021-01008, A.S.), Roche in collaboration with the Swedish Society of Gynecological Oncology (S.W.-F.), Assar Gabrielsson Foundation (FB19-86, C.M.), and the Lena Wäpplings Foundation (C.M.). A.S. declares stock ownership and is also a board member in Tulebovaasta, SiMSen Diagnostics, and Iscaff Pharma. A.S. has also received travel support from EMBL, Precision Medicine Forum, SLAS, and bioMCC. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
  •  
7.
  • Luna Santa-María, Manuel, 1995, et al. (författare)
  • Digital RNA sequencing using unique molecular identifiers enables ultrasensitive RNA mutation analysis
  • 2024
  • Ingår i: COMMUNICATIONS BIOLOGY. - 2399-3642. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutation analysis is typically performed at the DNA level since most technical approaches are developed for DNA analysis. However, some applications, like transcriptional mutagenesis, RNA editing and gene expression analysis, require RNA analysis. Here, we combine reverse transcription and digital DNA sequencing to enable low error digital RNA sequencing. We evaluate yield, reproducibility, dynamic range and error correction rate for seven different reverse transcription conditions using multiplexed assays. The yield, reproducibility and error rate vary substantially between the specific conditions, where the yield differs 9.9-fold between the best and worst performing condition. Next, we show that error rates similar to DNA sequencing can be achieved for RNA using appropriate reverse transcription conditions, enabling detection of mutant allele frequencies <0.1% at RNA level. We also detect mutations at both DNA and RNA levels in tumor tissue using a breast cancer panel. Finally, we demonstrate that digital RNA sequencing can be applied to liquid biopsies, analyzing cell-free gene transcripts. In conclusion, we demonstrate that digital RNA sequencing is suitable for ultrasensitive RNA mutation analysis, enabling several basic research and clinical applications.
  •  
8.
  • Osman, Ayman, et al. (författare)
  • Identification of genomic binding sites and direct target genes for the transcription factor DDIT3/CHOP
  • 2023
  • Ingår i: Experimental Cell Research. - : Elsevier BV. - 0014-4827 .- 1090-2422. ; 422:1
  • Tidskriftsartikel (refereegranskat)abstract
    • DDIT3 is a tightly regulated basic leucine zipper (bZIP) transcription factor and key regulator in cellular stress responses. It is involved in a variety of pathological conditions and may cause cell cycle block and apoptosis. It is also implicated in differentiation of some specialized cell types and as an oncogene in several types of cancer. DDIT3 was originally believed to act as a dominant-negative inhibitor by forming heterodimers with other bZIP transcription factors, preventing their DNA binding and transactivating functions. DDIT3 has, however, been reported to bind DNA and regulate target genes. Here, we employed ChIP sequencing combined with microarray-based expression analysis to identify direct binding motifs and target genes of DDIT3. The results reveal DDIT3 binding to motifs similar to other bZIP transcription factors, known to form heterodimers with DDIT3. Binding to a class III satellite DNA repeat sequence was also detected. DDIT3 acted as a DNA-binding transcription factor and bound mainly to the promotor region of regulated genes. ChIP sequencing analysis of histone H3K27 methylation and acetylation showed a strong overlap between H3K27-acetylated marks and DDIT3 binding. These results support a role for DDIT3 as a transcriptional regulator of H3K27ac-marked genes in transcriptionally active chromatin.
  •  
9.
  • Österlund, Tobias, 1984, et al. (författare)
  • UMIErrorCorrect and UMIAnalyzer: Software for Consensus Read Generation, Error Correction, and Visualization Using Unique Molecular Identifiers
  • 2022
  • Ingår i: Clinical Chemistry. - : Oxford University Press (OUP). - 0009-9147 .- 1530-8561. ; 68:11, s. 1425-1435
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Targeted sequencing using unique molecular identifiers (UMIs) enables detection of rare variant alleles in challenging applications, such as cell-free DNA analysis from liquid biopsies. Standard bioinformatics pipelines for data processing and variant calling are not adapted for deep-sequencing data containing UMIs, are inflexible, and require multistep workflows or dedicated computing resources. Methods We developed a bioinformatics pipeline using Python and an R package for data analysis and visualization. To validate our pipeline, we analyzed cell-free DNA reference material with known mutant allele frequencies (0%, 0.125%, 0.25%, and 1%) and public data sets. Results We developed UMIErrorCorrect, a bioinformatics pipeline for analyzing sequencing data containing UMIs. UMIErrorCorrect only requires fastq files as inputs and performs alignment, UMI clustering, error correction, and variant calling. We also provide UMIAnalyzer, a graphical user interface, for data mining, visualization, variant interpretation, and report generation. UMIAnalyzer allows the user to adjust analysis parameters and study their effect on variant calling. We demonstrated the flexibility of UMIErrorCorrect by analyzing data from 4 different targeted sequencing protocols. We also show its ability to detect different mutant allele frequencies in standardized cell-free DNA reference material. UMIErrorCorrect outperformed existing pipelines for targeted UMI sequencing data in terms of variant detection sensitivity. Conclusions UMIErrorCorrect and UMIAnalyzer are comprehensive and customizable bioinformatics tools that can be applied to any type of library preparation protocol and enrichment chemistry using UMIs. Access to simple, generic, and open-source bioinformatics tools will facilitate the implementation of UMI-based sequencing approaches in basic research and clinical applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy