SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Aas Wenche) srt2:(2010-2014)"

Sökning: WFRF:(Aas Wenche) > (2010-2014)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björkman, Mats P., et al. (författare)
  • Nitrate dry deposition in svalbard
  • 2013
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 65, s. 19071-
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic regions are generally nutrient limited, receiving an extensive part of their bio-available nitrogen from the deposition of atmospheric reactive nitrogen. Reactive nitrogen oxides, as nitric acid (HNO3) and nitrate aerosols (p-NO3), can either be washed out from the atmosphere by precipitation or dry deposited, dissolving to nitrate (NO3-). During winter, NO3- is accumulated in the snowpack and released as a pulse during spring melt. Quantification of NO3- deposition is essential to assess impacts on Arctic terrestrial ecology and for ice core interpretations. However, the individual importance of wet and dry deposition is poorly quantified in the high Arctic regions where in-situ measurements are demanding. In this study, three different methods are employed to quantify NO3- dry deposition around the atmospheric and ecosystem monitoring site, Ny-Alesund, Svalbard, for the winter season (September 2009 to May 2010): (1) A snow tray sampling approach indicates a dry deposition of -10.27 +/- 3.84 mg m(-2) (+/- S.E.); (2) A glacial sampling approach yielded somewhat higher values -30.68 +/- 12.00 mg m(-2); and (3) Dry deposition was also modelled for HNO3 and p-NO3 using atmospheric concentrations and stability observations, resulting in a total combined nitrate dry deposition of -10.76 +/- 1.26 mg m(-2). The model indicates that deposition primarily occurs via HNO3 with only a minor contribution by p-NO3. Modelled median deposition velocities largely explain this difference: 0.63 cm s(-1) for HNO3 while p-NO3 was 0.0025 and 0.16 cm s(-1) for particle sizes 0.7 and 7 mm, respectively. Overall, the three methods are within two standard errors agreement, attributing an average 14% (total range of 2-44%) of the total nitrate deposition to dry deposition. Dry deposition events were identified in association with elevated atmospheric concentrations, corroborating recent studies that identified episodes of rapid pollution transport and deposition to the Arctic.
  •  
2.
  • Karlsson, Per Erik, et al. (författare)
  • Biomass burning in eastern Europe during spring 2006 caused high deposition of ammonium in northern Fennoscandia
  • 2013
  • Ingår i: Environmental Pollution. - : Elsevier BV. - 0269-7491. ; 176, s. 71-79
  • Tidskriftsartikel (refereegranskat)abstract
    • High air concentrations of ammonium were detected at low and high altitude sites in Sweden, Finland and Norway during the spring 2006, coinciding with polluted air from biomass burning in eastern Europe passing over central and northern Fennoscandia. Unusually high values for throughfall deposition of ammonium were detected at one low altitude site and several high altitude sites in north Sweden. The occurrence of the high ammonium in throughfall differed between the summer months 2006, most likely related to the timing of precipitation events. The ammonia dry deposition may have contributed to unusual visible injuries on the tree vegetation in northern Fennoscandia that occurred during 2006, in combination with high ozone concentrations. It is concluded that long-range transport of ammonium from large-scale biomass burning may contribute substantially to the nitrogen load at northern latitudes. (C) 2013 Elsevier Ltd. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy