SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abbas Zareen 1962) srt2:(2005-2009)"

Sökning: WFRF:(Abbas Zareen 1962) > (2005-2009)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbas, Zareen, 1962, et al. (författare)
  • From restricted towards realistic models of salt solutions: Corrected Debye–Hückel theory and Monte Carlo simulations
  • 2007
  • Ingår i: Journal of Mathematical Fluid Mechanics. - : Elsevier BV. - 1422-6952 .- 1422-6928 .- 0378-3812. ; 260:2, s. 233-247
  • Tidskriftsartikel (refereegranskat)abstract
    • The properties of bulk salt solutions over wide concentration ranges are explored by a combination of simple physical theory and Monte Carlo (MC) simulations. The corrected Debye–Hückel (CDH) theory which incorporates ion size effects in a linear response approximation is extended to yield free energy and other thermodynamic properties by integration of the chemical potential over concentration. Charging integration which is usually used to obtain an electrostatic contribution of total free energy of electrolytes is avoided in this new direct approach. MC simulations are performed with a modified Widom particle insertion method, which also provides directly the ionic activity coefficients. The validity of the CDH theory is tested by comparison with the MC simulation data for 1:1, 2:1, 2:2 and 3:1 restricted primitive model (RPM) electrolytes over a wide concentration range and at various ion sizes. Mean ionic activity and osmotic coefficients calculated by the CDH theory in RPM approximation of electrolyte are fitted to experimental data by adjusting only a mean ionic diameter. Good fits up to 1 molal (m) concentration are obtained for a large number of salt solutions. MC simulations data for unrestricted primitive model (UPM) of 1:1 and 2:1 electrolytes are also fitted to the experimental data by varying the cation radius while keeping the anion radius fixed at a crystallographic value. The success of this approach is found to be salt specific. For example good fits up to 2 and 3.5 m concentrations were obtained for LiCl and LiBr, respectively. However in the case of less dissociated salts such as NaCl and KI the experimental data could only be fitted up to one molal concentration. Possibility of extending the applicability range of the CDH theory to concentrations >2 m is explored by including a concentration dependent dielectric constant as measured in experiments. Mean ionic activity coefficients for a number of salts could successfully be fitted up to 3 m concentration by adjusting only a mean ionic diameter. Difficulties encountered in simultaneously fitting the mean ionic activity and osmotic coefficients at salt concentrations >2 m are discussed.
  •  
2.
  • Abbas, Zareen, 1962, et al. (författare)
  • Monte Carlo Simulations of Salt Solutions: Exploring the Validity of Primitive Models
  • 2009
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 113:17, s. 5905-5916
  • Tidskriftsartikel (refereegranskat)abstract
    • An extensive series of Monte Carlo (MC) simulations were performed in order to explore the validity of simple primitive models of electrolyte solutions and in particular the effect of ion size asymmetry on the bulk thermodynamic properties of real salt solutions. Ionic activity and osmotic coefficients were calculated for 1:1, 2:1, and 3:1 electrolytes by using the unrestricted primitive model (UPM); i.e., ions are considered as charged hard spheres of different sizes dissolved in a dielectric continuum. Mean ionic activity and osmotic coefficients calculated by the MC simulations were fitted simultaneously to the experimental data by adjusting only the cation radius while keeping the anion radius fixed at its crystallographic value. Ionic radii were further optimized by systematically varying the cation and anion radii at a fixed sum of ionic radii. The success of this approach is found to be highly salt specific. For example, experimental data (mean ionic activity and osmotic coefficients) of salts which are usually considered as dissociated such as HCl, HBr, LiCl, LiBr, LiClO4, and KOH were successfully fitted up to 1.9, 2.5, 1.9, 3, 2.5, and 4.5 M concentrations, respectively. In the case of partially dissociated salts such as NaCl, the successful fits were only obtained in a more restricted concentration range. Consistent sets of the best fitted cation radii were obtained for acids, alkali, and alkaline earth halides. A list of recommended ionic radii is also provided. The reliability of the optimized ionic radii was further tested in simulations of the osmotic coefficients of LiCl−NaCl−KCl salt mixtures. A very good agreement between the simulated and experimental data was obtained up to ionic strength of 4.5 M.
  •  
3.
  • Abbas, Zareen, 1962, et al. (författare)
  • Size-Dependent Surface Charging of Nanoparticles
  • 2008
  • Ingår i: J of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 112:15, s. 5715-5723
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental interest in the possible curvature dependence of particle charging in electrolyte solutions is subjected to theoretical analysis. The corrected Debye-Hückel theory of surface complexation (CDH-SC) and Monte Carlo (MC) simulation are applied to investigate the dependence of surface charging of metal oxide nanoparticles on their size. Surface charge density versus pH curves for spherical metal oxide nanoparticles in the size range of 1-100 nm are calculated at various concentrations of a background electrolyte. The surface charge density of a nanoparticle is found to be highly size-dependent. As the particle diameter drops to below 10 nm there is considerable increase in the surface charge density as compared with the limiting values seen for particles larger than 20 nm. This increase in the surface charge density is due to the enhanced screening efficiency of the electrolyte solution around small nanoparticles, which is most prominent for particles of diameters less than 5 nm. For example, the surface charge densities calculated for 2 nm particles at 0.1 M concentration are very close to the values obtained for 100 nm particles at 1 M concentration. These predictions of the dependence of surface charge density on particle size by the CDH-SC theory are in very good agreement with the corresponding results obtained by the MC simulations. A shift in the pH value of the point of zero charge toward higher pH values is also seen with a decreasing particle size.
  •  
4.
  • Jenkins, Samantha, 1967-, et al. (författare)
  • Molecular dynamics simulation of nanocolloidal amorphous silica particles : Part I.
  • 2007
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 127:22, s. 224711-
  • Tidskriftsartikel (refereegranskat)abstract
    • Explicit molecular dynamics simulations were applied to a pair of amorphous silica nanoparticles in aqueous solution, with diameter of 4.4 nm and with four different background electrolyte concentrations, to extract the mean force acting between the two silica nanoparticles. Dependences of the interparticle forces on the separation and the background electrolyte concentration were demonstrated. The nature of the interaction of the counterions with charged silica surface sites (deprotonated silanols) was investigated. A "patchy" double layer of adsorbed sodium counterions was observed. Dependences of the interparticle potential of mean force on the separation and the background electrolyte concentration were demonstrated. Direct evidence of the solvation forces is presented in terms of changes of the water ordering at the surfaces of the isolated and double nanoparticles. The nature of the interaction of the counterions with charged silica surface sites (deprotonated silanols) was investigated in terms of quantifying the effects of the number of water molecules separately inside each pair of nanoparticles by defining an impermeability measure. A direct correlation was found between the impermeability (related to the silica surface "hairiness") and the disruption of water ordering. Differences in the impermeability between the two nanoparticles are attributed to differences in the calculated electric dipole moment.
  •  
5.
  • Jenkins, Samantha, 1967-, et al. (författare)
  • Molecular dynamics simulation of nanocolloidal amorphous silica particles: Part III
  • 2009
  • Ingår i: The Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 130
  • Tidskriftsartikel (refereegranskat)abstract
    • Explicit-solvent molecular dynamics simulations were applied to four pairs of amorphous silica nanoparticles, two pairs having a diameter of 2.0 nm and two pairs with diameter 3.2 nm. The silica nanoparticles were immersed in a background electrolyte consisting of Ca2+ and Cl− ions and water and mean forces acting between the pair of silica nanoparticles were extracted at four different background electrolyte concentrations. The pH was indirectly accounted for via the ratio of silicon to sodium used in the simulations. Dependence of the interparticle potential of mean force on the center-of-mass separation and the silicon to sodium ratio (5:1 and 20:1) is demonstrated. A Si:Na+ ratio of 5:1 gave more repulsive interparticle potentials and lower numbers of internanoparticle or “bridging” hydrogen bonds. Conversely a Si:Na+ ratio of 20:1 yielded more attractive potentials and higher numbers of bridging hydrogen bonds. The nature of the interaction of the counterions with charged silica surface sites (deprotonated silanols) was also investigated. The effect of the sodium double layer on water ordering was observed. The number of water molecules trapped inside the nanoparticles was investigated, and at the highest background ionic concentrations were found to consistently behave in accordance with there being an osmotic pressure. This study highlights the effect of divalent (Ca2+) background ions on the interparticle potentials compared with previous work using monovalent (Na+) background ions. Mechanisms of coagulation and the stability of silica nanocolloids found from this work appear to be in agreement with findings from experiments described in the literature.
  •  
6.
  • Jenkins, Samantha, 1967-, et al. (författare)
  • Molecular dynamics simulations of nanocolloidal amorphous silica particles: Part II
  • 2008
  • Ingår i: The Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 128:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Explicit molecular dynamics simulations were applied to a pair of amorphous silica nanoparticles with diameter of 3.2 nm immersed in a background electrolyte. Mean forces acting between the pair of silica nanoparticles were extracted at four different background electrolyte concentrations. The dependence of the interparticle potential of mean force on the separation and the silicon to sodium ratio, as well as on the background electrolyte concentration, are demonstrated. The pH was indirectly accounted for via the ratio of silicon to sodium used in the simulations. The nature of the interaction of the counterions with charged silica surface sites (deprotonated silanols) was also investigated. The effect of the sodium double layer on the water ordering was investigated for three Si:Na+ ratios. The number of water molecules trapped inside the nanoparticles was investigated as the Si:Na+ ratio was varied. Differences in this number between the two nanoparticles in the simulations are attributed to differences in the calculated electric dipole moment. The implications of the form of the potentials for aggregation are also discussed.
  •  
7.
  • Johnsson, Ann-Catrin J. H., 1981, et al. (författare)
  • Aggregation of Nanosized Colloidal Silica in the Presence of Various Alkali Cations Investigated by the Electrospray Technique
  • 2008
  • Ingår i: Langmuir. ; 24:22
  • Tidskriftsartikel (refereegranskat)abstract
    • The slow aggregation process of a concentrated silica dispersion (Bindzil 40/220) in the presence of alkali chlorides (LiCl, NaCl, KCl, RbCl, and CsCl) was investigated by means of mobility measurements. At intervals during the aggregation, particles and aggregates were transferred from the liquid phase to the gas phase via electrospray (ES) and subsequently size selected and counted using a scanning mobility particle sizer (SMPS). This method enables the acquisition of particle and aggregate size distributions with a time resolution of minutes. To our knowledge, this is the first time that the method has been applied to study the process of colloidal aggregation. The obtained results indicate that, independent of the type of counterion, a sufficient dilution of the formed gel will cause the particles to redisperse. Hence, the silica particles are, at least initially, reversibly aggregated. The reversibility of the aggregation indicates additional non-DLVO repulsive steric interactions that are likely due to the presence of a gel layer at the surface. The size of the disintegrating aggregates was monitored as a function of the time after dilution. It was found that the most stable aggregates were formed by the ions that adsorb most strongly on the particle surface. This attractive effect was ascribed to an ion−ion correlation interaction.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy