SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abbott Jessica K.) srt2:(2010-2014)"

Sökning: WFRF:(Abbott Jessica K.) > (2010-2014)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Weinstein, John N., et al. (författare)
  • The cancer genome atlas pan-cancer analysis project
  • 2013
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:10, s. 1113-1120
  • Forskningsöversikt (refereegranskat)abstract
    • The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumors to discover molecular aberrations at the DNA, RNA, protein and epigenetic levels. The resulting rich data provide a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages. The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA. Analysis of the molecular aberrations and their functional roles across tumor types will teach us how to extend therapies effective in one cancer type to others with a similar genomic profile. © 2013 Nature America, Inc. All rights reserved.
  •  
2.
  • Abbott, Jessica K., 1978-, et al. (författare)
  • Sexual conflict in wing size and shape in Drosophila melanogaster
  • 2010
  • Ingår i: Journal of Evolutionary Biology. - : Wiley. - 1010-061X .- 1420-9101. ; 23:9, s. 1989-1997
  • Tidskriftsartikel (refereegranskat)abstract
    • Intralocus sexual conflict occurs when opposing selection pressures operate on loci expressed in both sexes, constraining the evolution of sexual dimorphism and displacing one or both sexes from their optimum. We eliminated intralocus conflict in Drosophila melanogaster by limiting transmission of all major chromosomes to males, thereby allowing them to win the intersexual tug-of-war. Here, we show that this male-limited (ML) evolution treatment led to the evolution (in both sexes) of masculinized wing morphology, body size, growth rate, wing loading, and allometry. In addition to more male-like size and shape, ML evolution resulted in an increase in developmental stability for males. However, females expressing ML chromosomes were less developmentally stable, suggesting that being ontogenetically more male-like was disruptive to development. We suggest that sexual selection over size and shape of the imago may therefore explain the persistence of substantial genetic variation in these characters and the ontogenetic processes underlying them.
  •  
3.
  • Abbott, Jessica, et al. (författare)
  • Epigenetics and Sex-Specific Fitness : An Experimental Test Using Male-Limited Evolution in Drosophila melanogaster
  • 2013
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:7, s. e70493-
  • Tidskriftsartikel (refereegranskat)abstract
    • When males and females have different fitness optima for the same trait but share loci, intralocus sexual conflict is likely to occur. Epigenetic mechanisms such as genomic imprinting (in which expression is altered according to parent-of-origin) and sex-specific maternal effects have been suggested as ways by which this conflict can be resolved. However these ideas have not yet been empirically tested. We designed an experimental evolution protocol in Drosophila melanogaster that enabled us to look for epigenetic effects on the X-chromosome-a hotspot for sexually antagonistic loci. We used special compound-X females to enforce father-to-son transmission of the X-chromosome for many generations, and compared fitness and gene expression levels between Control males, males with a Control X-chromosome that had undergone one generation of father-son transmission, and males with an X-chromosome that had undergone many generations of father-son transmission. Fitness differences were dramatic, with experimentally-evolved males approximately 20% greater than controls, and with males inheriting a non-evolved X from their father about 20% lower than controls. These data are consistent with both strong intralocus sexual conflict and misimprinting of the X-chromosome under paternal inheritance. However, expression differences suggested that reduced fitness under paternal X inheritance was largely due to deleterious maternal effects. Our data confirm the sexually-antagonistic nature of Drosophila's X-chromosome and suggest that the response to male-limited X-chromosome evolution entails compensatory evolution for maternal effects, and perhaps modification of other epigenetic effects via coevolution of the sex chromosomes.
  •  
4.
  • Abbott, Jessica K. (författare)
  • Intra-locus sexual conflict and sexually antagonistic genetic variation in hermaphroditic animals
  • 2011
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 278:1703, s. 161-169
  • Forskningsöversikt (refereegranskat)abstract
    • Intra-locus sexual conflict results when sex-specific selection pressures for a given trait act against the intra-sexual genetic correlation for that trait. It has been found in a wide variety of taxa in both laboratory and natural populations, but the importance of intra-locus sexual conflict and sexually antagonistic genetic variation in hermaphroditic organisms has rarely been considered. This is not so surprising given the conceptual and theoretical association of intra-locus sexual conflict with sexual dimorphism, but there is no a priori reason why intra-locus sexual conflict cannot occur in hermaphroditic organisms as well. Here, I discuss the potential for intra-locus sexual conflict in hermaphroditic animals and review the available evidence for such conflict, and for the existence of sexually antagonistic genetic variation in hermaphrodites. I argue that mutations with asymmetric effects are particularly likely to be important in mediating sexual antagonism in hermaphroditic organisms. Moreover, sexually antagonistic genetic variation is likely to play an important role in inter-individual variation in sex allocation and in transitions to and from gonochorism (separate sexes) in simultaneous hermaphrodites. I also describe how sequential hermaphrodites may experience a unique form of intra-locus sexual conflict via antagonistic pleiotropy. Finally, I conclude with some suggestions for further research.
  •  
5.
  • Abbott, Jessica K., et al. (författare)
  • Obtaining snapshots of genetic variation using hemiclonal analysis
  • 2011
  • Ingår i: Trends in Ecology & Evolution. - : Elsevier BV. - 0169-5347 .- 1872-8383. ; 26:7, s. 359-368
  • Forskningsöversikt (refereegranskat)abstract
    • Hemiclones are naturally occurring or artificially produced individuals that share a single specific genetic haplotype. Natural hemiclones are produced via hybridization between two closely related species, whereas hemiclonal analysis in Drosophila is carried out in the laboratory via crosses with artificially created 'clone-generator' females with a specific genetic make-up. Hemiclonal analysis in Drosophila has been applied successfully to date to obtain measures of standing genetic variation for numerous traits. Here, we review the current hemiclonal literature and suggest future directions for hemiclonal research, including its application in molecular and genomic studies, and the adaptation of natural hemiclonal systems to carry out Drosophila-type studies of standing genetic variation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy