SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abdel Halim Samy M.) srt2:(2012)"

Sökning: WFRF:(Abdel Halim Samy M.) > (2012)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Basic, Vladimir Tomislav, et al. (författare)
  • Exposure to cigarette smoke induces overexpression of von Hippel-Lindau tumor suppressor in mouse skeletal muscle
  • 2012
  • Ingår i: American Journal of Physiology - Lung cellular and Molecular Physiology. - Bethesda, USA : American Physiological Society. - 1040-0605 .- 1522-1504. ; 303:6, s. L519-L527
  • Tidskriftsartikel (refereegranskat)abstract
    • Cigarette smoke (CS) is a well established risk factor in the development of chronic obstructive pulmonary disease (COPD). In contrast, the extent to which CS exposure contributes to the development of the systemic manifestations of COPD, such as skeletal muscle dysfunction and wasting remains largely unknown. Decreased skeletal muscle capillarization has been previously reported in early stages of COPD and might play an important role in the development of COPD-associated skeletal muscle abnormalities. To investigate the effects of chronic CS exposure on skeletal muscle capillarization and exercise tolerance a mouse model of CS exposure was used. The129/SvJ mice were exposed to CS for 6 months, and the expression of putative elements of the hypoxia-angiogenic signaling cascade as well as muscle capillarization were studied. Additionally, functional tests assessing exercise tolerance/endurance were performed in mice. Compared to controls, skeletal muscles from CS-exposed mice exhibited significantly enhanced expression of von Hippel-Lindau tumor suppressor (VHL), ubiquitin-conjugating enzyme E2D1 (UBE2D1) and prolyl hydroxylase-2 (PHD2). In contrast, hypoxia-inducible factor-1 (HIF1-α) and vascular endothelial growth factor (VEGF) expression was reduced. Furthermore, reduced muscle fiber cross-sectional area, decreased skeletal muscle capillarization, and reduced exercise tolerance were also observed in CS-exposed animals. Taken together, the current results provide evidence linking chronic CS exposure and induction of VHL expression in skeletal muscles leading towards impaired hypoxia-angiogenesis signal transduction, reduced muscle fiber cross-sectional area and decreased exercise tolerance.
  •  
3.
  • Krivospitskaya, Olesya, 1983-, et al. (författare)
  • A CYP26B1 polymorphism enhances retinoic acid catabolism and may aggravate atherosclerosis
  • 2012
  • Ingår i: Molecular Medicine. - New York, USA : The Feinstein Institute for Medical Research. - 1076-1551 .- 1528-3658. ; 18:1, s. 712-718
  • Tidskriftsartikel (refereegranskat)abstract
    • All-trans retinoic acid, controlled by CYP26 enzymes, potentially has beneficial effects in atherosclerosis treatment. This study investigates CYP26B1 in atherosclerosis and effects of a genetic polymorphism in CYP26B1 on retinoid catabolism. We found that CYP26B1 mRNA was induced by retinoic acid in human atherosclerotic arteries and CYP26B1 and the macrophage marker CD68 co-localized in human atherosclerotic lesions. In mice, Cyp26B1 mRNA was higher in atherosclerotic than normal arteries. Databases were queried for non-synonymous CYP26B1 SNPs and rs2241057 selected for further studies. Constructs of the CYP26B1 variants were created and used for production of purified proteins and transfection of macrophage-like cells. The minor variant catabolized retinoic acid with significantly higher efficiency, indicating that rs2241057 is functional and suggesting reduced retinoid availability in tissues with the minor variant. rs2241057 was investigated in a Stockholm Coronary Atherosclerosis Risk Factor (SCARF) subgroup. The minor allele was associated with slightly larger lesions as determined by angiography. In summary, this study identifies the first CYP26B1 polymorphism that alters CYP26B1 capacity to metabolize retinoic acid. CYP26B1 was expressed in macrophage-rich areas of human atherosclerotic lesions, induced by retinoic acid and increased in murine atherosclerosis. Taken together, the results indicate that CYP26B1 capacity is genetically regulated and suggest that local CYP26B1 activity may influence atherosclerosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy