SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abdelaziz Omar Y.) srt2:(2019)"

Sökning: WFRF:(Abdelaziz Omar Y.) > (2019)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Thomas, HS, et al. (författare)
  • 2019
  • swepub:Mat__t
  •  
2.
  • Bayomie, Omar S., et al. (författare)
  • Exceeding Pinch limits by process configuration of an existing modern crude oil distillation unit – A case study from refining industry
  • 2019
  • Ingår i: Journal of Cleaner Production. - : Elsevier BV. - 0959-6526. ; 231, s. 1050-1058
  • Tidskriftsartikel (refereegranskat)abstract
    • Crude Distillation Unit (CDU) represents significant challenge for retrofitting and energy optimisation as the most energy intensive consumer in a conventional crude oil refinery. Pinch Technology and its based-methodologies are found primary keys for decades to energy savings in refining industries for a range of common economic-based and environmental objectives or applications. Typical benefits in energy savings are reported within 20–40% of original designs. However, such savings are limited and questioned when modern refiners are dealt with. The current paper addresses the revamping of a modern refinery exhibiting an existing high energy efficiency (≈93%). This implies the maximum potential energy savings would only be 7% at current process conditions. The present research proposes an algorithm that tackles energy recovery of modern refiners, enabling additional savings beyond the energy targets set by the existing process. The algorithm starts by process simulation and validation against real plant data, followed by a network optimisation, e.g. stream splitting, to reach the energy targets set by Pinch Analysis. The energy targets are then moved to another lower level by performing potential process modifications to reduce the energy consumption further. Results showed that the current modern refinery unit could reach its energy targets by stream splitting modifications with hot energy savings of 2.69 MW. Process modifications resulted in additional energy savings of 31.3% beyond the current level of the existing plant alongside less than a year of payback period for estimated capital investment. An environmental assessment is performed, and comparable reductions were obtained with respect to greenhouse gas, with reduction in CO2 emissions by 45.1%. The proposed retrofit methodology is applicable to minimising energy consumptions of refiners including modern units to achieve energy levels beyond energy targets by new process modifications.
  •  
3.
  • Abdelaziz, Omar Y., et al. (författare)
  • Membrane filtration of alkali-depolymerised kraft lignin for biological conversion
  • 2019
  • Ingår i: Bioresource Technology Reports. - : Elsevier BV. - 2589-014X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we have investigated the possibility of membrane filtration as a means for obtaining a fraction containing mainly low-molecular-weight (LMW) compounds from depolymerised lignin (DL) for subsequent microbial conversion. A DL stream from continuous-mode alkali depolymerisation of a softwood kraft lignin produced at a temperature of 220 °C and a residence time of 2 min, using a NaOH/lignin weight ratio of 1 with 5 wt% lignin loading was fractionated using a polymeric membrane with a molecular weight cut-off of 500–700 Da. The permeate (DLP) volume recovery of LMW phenolics (250–450 Da) was 70% after filtration for 3.7 h. The DLP was used as a carbon source for growth of three bacterial strains; Pseudomonas fluorescens, P. putida EM42 and Rhodococcus opacus, and good growth was obtained by the first two microorganisms. This proof-of-concept study demonstrates a novel strategy for technical lignin valorisation by combining depolymerisation, nanofiltration and bioconversion.
  •  
4.
  • Abdelaziz, Omar Y., et al. (författare)
  • Oxidative Depolymerisation of Lignosulphonate Lignin into Low-Molecular-Weight Products with Cu–Mn/δ-Al2O3
  • 2019
  • Ingår i: Topics in Catalysis. - : Springer Science and Business Media LLC. - 1022-5528 .- 1572-9028. ; 62, s. 639-648
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignin depolymerisation receives great attention due to the pressing need to find sustainable alternatives to fossil sources for production of fuels and chemicals. In this study, alumina-supported Cu–Mn and Ni–Mo catalysts were tested for oxidative depolymerisation of a technical lignin stream—sodium lignosulphonates—to produce valuable low-molecular-weight aromatics that may be considered for applications in the fuels and chemicals sector. The reactions were performed at elevated temperature and oxygen pressure, and the product mixtures were analysed by size exclusion chromatography, two-dimensional nuclear magnetic resonance spectroscopy and supercritical fluid chromatography mass spectrometry. The best performance was obtained with Cu–Mn/δ-Al 2 O 3 , which was thoroughly characterised before and after use by nitrogen physisorption, scanning electron microscopy, energy dispersive spectroscopy, powder X-ray diffraction, thermal gravimetric analysis, inductively coupled plasma optical emission spectrometry and X-ray photoelectron spectroscopy. Major products identified were vanillin, p-hydroxybenzaldehyde, vanillic acid and p-hydroxybenzoic acid as well as smaller aliphatic aldehydes, acids and lactones.
  •  
5.
  • Abdelaziz, Omar Y., et al. (författare)
  • Oxidative Depolymerization of Kraft Lignin for Microbial Conversion
  • 2019
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 7:13, s. 11640-11652
  • Tidskriftsartikel (refereegranskat)abstract
    • The valorization of lignin is being increasingly recognized as crucial to improve the economic viability of integrated biorefineries. Because of its inherent heterogeneity and recalcitrance, lignin has been treated as a waste product in the pulp and paper industry, but new technologies are now being explored to transform lignin into a sustainable resource and enhance its value chain. In the present study, alkaline oxidative depolymerization was investigated as a potential form of pretreatment to enable further biological conversion of LignoBoost kraft lignin (LB). LB lignin oxidation reactions were studied at various temperatures (120-200 °C) and O2 partial pressures (3-15 bar) to identify the optimal conditions for obtaining a biocompatible, oxidatively depolymerized lignin (ODLB) stream. The low molecular weight compounds resulting from this treatment consisted mainly of aromatic monomers and carboxylic acids. The highest yield of aromatic monomers, 3 wt %, was obtained at 160 °C and 3 bar O2. The yield of carboxylic acids increased with both increasing temperature and O2 pressure, exceeding 13% under the harshest conditions investigated. The growth of four aromatic-catabolizing bacterial strains was examined on reaction product mixtures, all of which showed growth on agar plates utilizing ODLB as the sole source of carbon and energy. Rhodococcus opacus and Sphingobium sp. SYK-6 were found to consume most of the aromatic monomers present in the ODLB (e.g., vanillin, vanillate, acetovanillone, and guaiacol). The findings of this study indicate that pretreatment by oxidative depolymerization has potential in the biological valorization of technical lignin streams, for the production of valuable chemicals and materials.
  •  
6.
  • Ajao, Olumoye, et al. (författare)
  • Green solvents-based fractionation process for kraft lignin with controlled dispersity and molecular weight
  • 2019
  • Ingår i: Bioresource Technology. - : Elsevier BV. - 0960-8524. ; 291
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this work is to develop a novel green solvent based sustainable process to refine lignin into low molecular weight (LMW) and high molecular weight (HMW) fractions. Lignin dispersity reduction were experimentally determined using four solvent mixtures, and benchmarked against eight pure solvents. Data outputs were used for modelling the integrated fractionation process. Dispersity reduction of up to 73% was achieved for the high value LMW fraction. Also, a 90% reduction of energy requirement was achieved with an optimized process incorporating a mechanical vapor compression system. This study showed that solvent mixtures involving water can significantly reduce the cost, environment, health and safety impacts of lignin fractionation. Techno-economic evaluation confirmed the economic viability of a large-scale process processing 50 tonne/day of lignin.
  •  
7.
  • Ravi, Krithika, et al. (författare)
  • Bacterial conversion of depolymerized Kraft lignin
  • 2019
  • Ingår i: Biotechnology for Biofuels. - : Springer Science and Business Media LLC. - 1754-6834. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundLignin is a potential feedstock for microbial conversion into various chemicals. However, the microbial degradation rate of native or technical lignin is low, and chemical depolymerization is needed to obtain reasonable conversion rates. In the current study, nine bacterial strains belonging to the Pseudomonas and Rhodococcus genera were evaluated for their ability to grow on alkaline-treated softwood lignin as a sole carbon source.ResultsPseudomonas fluorescens DSM 50090 and Rhodococcus opacus DSM1069 showed the best growth of the tested species on plates with lignin. Further evaluation of P. fluorescens and R. opacus was made in liquid cultivations with depolymerized softwood Kraft lignin (DL) at a concentration of 1 g/L. Size-exclusion chromatography (SEC) showed that R. opacus consumed most of the available lower-molecular weight compounds (approximately 0.1–0.4 kDa) in the DL, but the weight distribution of larger fractions was almost unaffected. Importantly, the consumed compounds included guaiacol—one of the main monomers in the DL. SEC analysis of P. fluorescens culture broth, in contrast, did not show a large conversion of low-molecular weight compounds, and guaiacol remained unconsumed. However, a significant shift in molecular weight distribution towards lower average weights was seen after cultivation with P. fluorescens.ConclusionsRhodococcus opacus and P. fluorescens were identified as two potential microbial candidates for the conversion/consumption of base-catalyzed depolymerized lignin, acting on low- and high-molecular weight lignin fragments, respectively. These findings will be of relevance for designing bioconversion of softwood Kraft lignin.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy