SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abdelfattah Ahmed) srt2:(2021)"

Sökning: WFRF:(Abdelfattah Ahmed) > (2021)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdelfattah, Ahmed, et al. (författare)
  • Experimental evidence of microbial inheritance in plants and transmission routes from seed to phyllosphere and root
  • 2021
  • Ingår i: Environmental Microbiology. - : Wiley. - 1462-2912 .- 1462-2920. ; 23:4, s. 2199-2214
  • Tidskriftsartikel (refereegranskat)abstract
    • While the environment is considered the primary origin of the plant microbiome, the potential role of seeds as a source of transmitting microorganisms has not received much attention. Here we tested the hypothesis that the plant microbiome is partially inherited through vertical transmission. An experimental culturing device was constructed to grow oak seedlings in a microbe-free environment while keeping belowground and aboveground tissues separated. The microbial communities associated with the acorn's embryo and pericarp and the developing seeding's phyllosphere and root systems were analysed using amplicon sequencing of fungal ITS and bacterial 16S rDNA. Results showed that the seed microbiome is diverse and non-randomly distributed within an acorn. The microbial composition of the phyllosphere was diverse and strongly resembled the composition found in the embryo, whereas the roots and pericarp each had a less diverse and distinct microbial community. Our findings demonstrate a high level of microbial diversity and spatial partitioning of the fungal and bacterial community within both seed and seedling, indicating inheritance, niche differentiation and divergent transmission routes for the establishment of root and phyllosphere communities. 
  •  
2.
  • Abdelfattah, Ahmed, et al. (författare)
  • Global analysis of the apple fruit microbiome : are all apples the same?
  • 2021
  • Ingår i: Environmental Microbiology. - : Wiley. - 1462-2912 .- 1462-2920. ; 23:10, s. 6038-6055
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first worldwide study on the apple (Malus x domestica) fruit microbiome that examines questions regarding the composition and the assembly of microbial communities on and in apple fruit. Results revealed that the composition and structure of the fungal and bacterial communities associated with apple fruit vary and are highly dependent on geographical location. The study also confirmed that the spatial variation in the fungal and bacterial composition of different fruit tissues exists at a global level. Fungal diversity varied significantly in fruit harvested in different geographical locations and suggests a potential link between location and the type and rate of postharvest diseases that develop in each country. The global core microbiome of apple fruit was represented by several beneficial microbial taxa and accounted for a large fraction of the fruit microbial community. The study provides foundational information about the apple fruit microbiome that can be utilized for the development of novel approaches for the management of fruit quality and safety, as well as for reducing losses due to the establishment and proliferation of postharvest pathogens. It also lays the groundwork for studying the complex microbial interactions that occur on apple fruit surfaces.
  •  
3.
  • Faticov, Maria, et al. (författare)
  • Climate warming dominates over plant genotype in shaping the seasonal trajectory of foliar fungal communities on oak
  • 2021
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 231:5, s. 1770-1783
  • Tidskriftsartikel (refereegranskat)abstract
    • Leaves interact with a wealth of microorganisms. Among these, fungi are highly diverse and are known to contribute to plant health, leaf senescence and early decomposition. However, patterns and drivers of the seasonal dynamics of foliar fungal communities are poorly understood. We used a multifactorial experiment to investigate the influence of warming and tree genotype on the foliar fungal community on the pedunculate oak Quercus robur across one growing season. Fungal species richness increased, evenness tended to decrease, and community composition strongly shifted during the growing season. Yeasts increased in relative abundance as the season progressed, while putative fungal pathogens decreased. Warming decreased species richness, reduced evenness and changed community composition, especially at the end of the growing season. Warming also negatively affected putative fungal pathogens. We only detected a minor imprint of tree genotype and warming x genotype interactions on species richness and community composition. Overall, our findings demonstrate that warming plays a larger role than plant genotype in shaping the seasonal dynamics of the foliar fungal community on oak. These warming-induced shifts in the foliar fungal community may have a pronounced impact on plant health, plant-fungal interactions and ecosystem functions.
  •  
4.
  • Piombo, Edoardo, et al. (författare)
  • Metagenomics Approaches for the Detection and Surveillance of Emerging and Recurrent Plant Pathogens
  • 2021
  • Ingår i: Microorganisms. - : MDPI AG. - 2076-2607. ; 9:1
  • Forskningsöversikt (refereegranskat)abstract
    • Globalization has a dramatic effect on the trade and movement of seeds, fruits and vegetables, with a corresponding increase in economic losses caused by the introduction of transboundary plant pathogens. Current diagnostic techniques provide a useful and precise tool to enact surveillance protocols regarding specific organisms, but this approach is strictly targeted, while metabarcoding and shotgun metagenomics could be used to simultaneously detect all known pathogens and potentially new ones. This review aims to present the current status of high-throughput sequencing (HTS) diagnostics of fungal and bacterial plant pathogens, discuss the challenges that need to be addressed, and provide direction for the development of methods for the detection of a restricted number of related taxa (specific surveillance) or all of the microorganisms present in a sample (general surveillance). HTS techniques, particularly metabarcoding, could be useful for the surveillance of soilborne, seedborne and airborne pathogens, as well as for identifying new pathogens and determining the origin of outbreaks. Metabarcoding and shotgun metagenomics still suffer from low precision, but this issue can be limited by carefully choosing primers and bioinformatic algorithms. Advances in bioinformatics will greatly accelerate the use of metagenomics to address critical aspects related to the detection and surveillance of plant pathogens in plant material and foodstuffs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy