SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abed Salwan Ali) srt2:(2023)"

Sökning: WFRF:(Abed Salwan Ali) > (2023)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Al-Ansari, Nadhir, 1947-, et al. (författare)
  • Causes of Water Resources Scarcity in Iraq and Possible Solutions
  • 2023
  • Ingår i: Engineering. - : Scientific Research Publishing. - 1947-3931 .- 1947-394X. ; 15:9, s. 467-496
  • Tidskriftsartikel (refereegranskat)abstract
    • Iraq relies in its water resources on the waters of the Tigris and Euphrates and their tributaries. The country is located in the lower part of the catchment area of these rivers. The long-term average annual flow that enters Iraq from these rivers is about 30 BCM from the Euphrates, 21.2 BCM from the Tigris, 24.78 BCM from tributaries and 7 BCM from side valleys between Iraq and Iran. Now, the flow of these rivers is decreasing due to climate change and hydrological projects established in the upper parts of the catchment. It is indicated that precipitation will decrease by 15% - 25% during this century and that means that the flow of the Tigris and Euphrates rivers will be reduced by 29% - 73%. This will cause a grave depletion of groundwater resources. Türkiye is trying to finish building 22 dams and 19 hydropower stations. Iran built 12 dams and diverted the flow of some tributaries inside Iran and blocked all the valleys that contribute water from its land to Iraq. For these reasons, Iraq is experiencing shortages in its water resources and there is some sort of friction and conflict between riparian countries within the Tigris and Euphrates basins because each country tries to secure its water resources. In this research, the factors affecting the hydro politics within these basins are water scarcity, climate change and hydrological projects, population growth rate, energy issues, water mismanagement, economic changes, expansions of projects and technology, political issues, international water laws and public awareness. In case the situation remains as it is, Iraq will experience many problems in health, environment, economy, and security. To solve the problem of water scarcity in Iraq, two parallel lines of action are to be considered. These are: 1) Reach agreements with Riparian Parties; 2) Develop a long-term strategy that should take the following: a) Rehabilitating of existing dams, barrages & pump stations, b) Improving the efficiency of diversion and supply, c) Using of nonconventional water resources, d) Irrigation modernization using suitable techniques, e) Developing a public awareness program, f) Developing human resources program and establishing an agenda for training, g) Developing an agricultural plan that takes into consideration the possibility of reducing crops that consume a lot of water.
  •  
2.
  • Dibs, Hayder, et al. (författare)
  • Fusion Landsat-8 Thermal TIRS and OLI Datasets for Superior Monitoring and Change Detection using Remote Sensing
  • 2023
  • Ingår i: Emerging Science Journal. - : Ital Publication. - 2610-9182. ; 7:2, s. 428-444
  • Tidskriftsartikel (refereegranskat)abstract
    • Currently, updating the change detection (CD) of land use/land cover (LU/LC) geospatial information with high accuracy outcomes is important and very confusing with the different classification methods, datasets, satellite images, and ancillary dataset types available. However, using just the low spatial resolution visible bands of the remotely sensed images will not provide good information with high accuracy. Remotely sensed thermal data contains very valuable information to monitor and investigate the CD of the LU/LC. So, it needs to involve the thermal datasets for better outcomes. Fusion plays a big role to map the CD. Therefore, this study aims to find out a refining method for estimating the accurate CD method of the LU/LC patterns by investigating the integration of the effectiveness of the thermal satellite data with visible datasets by (a) adopting a noise removal model, (b) satellite images resampling, (c) image fusion, combining and integrating between the visible and thermal images using the Grim Schmidt spectral (GS) method, (d) applying image classification using Mahalanobis distances (MH), Maximum likelihood (ML) and artificial neural network (ANN) classifiers on datasets captured from the Landsat-8 TIRS and OLI satellite system, these images were captured from operational land imager (OLI) and the thermal infrared (TIRS) sensors of 2015 and 2020 to generate about of twelve LC maps. (e) The comparison was made among all the twelve classifiers' results. The results reveal that adopting the ANN technique on the integrated images of the combined TIRS and OLI datasets has the highest accuracy compared to the rest of the applied image classification approaches. The obtained overall accuracy was 96.31% and 98.40%, and the kappa coefficients were (0.94) and (0.97) for the years 2015 and 2020, respectively. However, the ML classifier obtains better results compared to the MH approach. The image fusion and integration of the thermal images improve the accuracy results by 5%–6% from the proposed method better than using low spatial-resolution visible datasets alone.
  •  
3.
  • Vishwakarma, Dinesh Kumar, et al. (författare)
  • Modeling of soil moisture movement and wetting behavior under point-source trickle irrigation
  • 2023
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • The design and selection of ideal emitter discharge rates can be aided by accurate information regarding the wetted soil pattern under surface drip irrigation. The current field investigation was conducted in an apple orchard in SKUAST- Kashmir, Jammu and Kashmir, a Union Territory of India, during 2017–2019. The objective of the experiment was to examine the movement of moisture over time and assess the extent of wetting in both horizontal and vertical directions under point source drip irrigation with discharge rates of 2, 4, and 8 L h−1. At 30, 60, and 120 min since the beginning of irrigation, a soil pit was dug across the length of the wetted area on the surface in order to measure the wetting pattern. For measuring the soil moisture movement and wetted soil width and depth, three replicas of soil samples were collected according to the treatment and the average value were considered. As a result, 54 different experiments were conducted, resulting in the digging of pits [3 emitter discharge rates × 3 application times × 3 replications × 2 (after application and 24 after application)]. This study utilized the Drip-Irriwater model to evaluate and validate the accuracy of predictions of wetting fronts and soil moisture dynamics in both orientations. Results showed that the modeled values were very close to the actual field values, with a mean absolute error of 0.018, a mean bias error of 0.0005, a mean absolute percentage error of 7.3, a root mean square error of 0.023, a Pearson coefficient of 0.951, a coefficient of correlation of 0.918, and a Nash–Sutcliffe model efficiency coefficient of 0.887. The wetted width just after irrigation was measured at 14.65, 16.65, and 20.62 cm; 16.20, 20.25, and 23.90 cm; and 20.00, 24.50, and 28.81 cm in 2, 4, and 8 L h−1, at 30, 60, and 120 min, respectively, while the wetted depth was observed 13.10, 16.20, and 20.44 cm; 15.10, 21.50, and 26.00 cm; 19.40, 25.00, and 31.00 cm, respectively. As the flow rate from the emitter increased, the amount of moisture dissemination grew (both immediately and 24 h after irrigation). The soil moisture contents were observed 0.4300, 0.3808, 0.2298, 0.1604, and 0.1600 cm3 cm−3 just after irrigation in 2 L h−1 while 0.4300, 0.3841, 0.2385, 0.1607, and 0.1600 cm3 cm−3 were in 4 L h−1 and 0.4300, 0.3852, 0.2417, 0.1608, and 0.1600 cm3 cm−3 were in 8 L h−1 at 5, 10, 15, 20, and 25 cm soil depth in 30 min of application time. Similar distinct increments were found in 60, and 120 min of irrigation. The findings suggest that this simple model, which only requires soil, irrigation, and simulation parameters, is a valuable and practical tool for irrigation design. It provides information on soil wetting patterns and soil moisture distribution under a single emitter, which is important for effectively planning and designing a drip irrigation system. Investigating soil wetting patterns and moisture redistribution in the soil profile under point source drip irrigation helps promote efficient planning and design of a drip irrigation system.
  •  
4.
  • Adamo, Nasrat, et al. (författare)
  • Virtual Water Trade and Food Security for Iraq
  • 2023
  • Ingår i: Engineering. - : Scientific Research Publishing. - 1947-3931 .- 1947-394X. ; 15:7, s. 417-430
  • Tidskriftsartikel (refereegranskat)abstract
    • Iraq depends on its water resources from the water of the Tigris and Euphrates Rivers and their tributaries. Now, the flow of these rivers is decreasing, and Iraq is experiencing a water shortage problem. The situation is expected to be graver in the future if no action is considered. It is expected that the population will be about 70 million in 2050 and about 90 million in 2070. In such a case, thus, the quantities of water available in the future will not besufficient to produce most of the requirements of food security, whether that be from agricultural or animal products. To overcome this problem, water management planning should be based on scientific background to overcome the present and expected problems. One of the main factors to be considered should be based on scientific studies of the virtual water footprint of different food crops to provide the largest possible amount of virtual water and avoid the acute shortage of its national water from surface and ground irrigation water (blue water) and rainwater (green water), in addition to working hard to provide the largest possible amount of desalinated water and refined sewage (gray water). In addition, any strategic plan for sustainable development in the country must be comprehensive so that it is not satisfied with improving the situation in the field of food security related to water security, but rather among its other elements is community development that directly affects food security, including setting policies to reduce consumption by reducing the steady increase in population where the population rate is 2.97% now. Collective awareness and guidance programs in all the fields of water and food security are very important to be adopted, so that everyone knows that the issue of food security and what derives from it are an existential issue related to the survival of Iraq as a state and people. In this research, facts are stated so that action is to be considered to minimize the water shortage problem. The new strategic water resources management plan is to be adopted that considers existing and future expected problems.
  •  
5.
  • Amirah Hamzah, Hamizah, et al. (författare)
  • Heavy metal speciation in surface sediments and their impact on the bioaccumulation of green mussels (Perna viridis) from the eastern part of the Straits of Johor, Malaysia
  • 2023
  • Ingår i: Total Environment Research Themes. - : Elsevier. - 2772-8099. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Many aquatic ecosystems are vulnerable to many pollutants, particularly heavy metals that are now a threat to public health. It may be more effective to manage pollution in waterways if we can better understand the connection between heavy metals in sediments and their accumulation in green mussels. In this study, lead levels in green mussels (Perna viridis) were above the permissible maximum level (WHO, Malaysia Food Regulation, and the FAO). Moreover, zinc levels exceeded the FAO's maximum recommended range. The fractionate of heavy metals in surface sediment from the eastern part of the Johore Straits was investigated using the sequential extraction techniques (SET) method. In the majority of sampling stations, copper's chemical speciation followed the following order: residual > oxidisable-organic > exchangeable > acid reducible, while zinc's and lead's chemical speciation followed the following pattern: residual > oxidisable-organic > acid reducible > exchangeable. The results of Pearson's correlation studies demonstrated a substantial association between Zn concentration in the tissues of green mussels and total Zinc, exchangeable (F1), acid-reducible (F2), and residual (F4) Zn in surface sediment. Green mussel Cu content and surface sediment Cu of exchangeable (F1), residual (F4), and total Cu were found to correlate. As a result, green mussels are being used as a biomonitoring agent for heavy metal contamination on the eastern side of the Straits of Johor in Malaysia.
  •  
6.
  • Gururani, Dheeraj Mohan, et al. (författare)
  • Mapping Prospects for Artificial Groundwater Recharge Utilizing Remote Sensing and GIS Methods
  • 2023
  • Ingår i: Water. - : MDPI. - 2073-4441. ; 15:22
  • Tidskriftsartikel (refereegranskat)abstract
    • The indiscriminate use of groundwater and its overexploitation has led to a significant decline in groundwater resources in India, making it essential to identify potential recharge zones for aquifer recharge. A study was conducted to determine such potential recharge zones in the Nandhour-Kailash River watershed. The study area included 1481 streams divided into 12 sub-basins (SWS). The results show that the downstream Saraunj sub-basins (SWS-11) and Odra sub-basins (SWS-12) were high priority and required immediate soil and water conservation attention. Sub catchments Lobchla West (SWS-4), Deotar (SWS-5), Balot South (SWS-8), Nandhour (SWS-9), and Nakoliy (SWS-10) had medium priority and were designated for moderate soil erosion and degradation. In contrast, sub-catchments Aligad (SWS-1), Kundal (SWS-2), Lowarnala North (SWS-3), Bhalseni (SWS-6), and Uparla Gauniyarao (SWS-7) had low priority, indicating a low risk of soil erosion and degradation. Using the existing groundwater level data, the potential map of groundwater was validated to confirm its validity. According to the guidelines provided by the Integrated Mission for Sustainable Development (IMSD), the results of the groundwater potential zones for good to very good zones have been integrated at the slope and stream order. In a 120.94 km2 area with a slope of 0–5% in first-order streams, 36 ponds were proposed, and in a 218.03 km2 area with a slope of 15% in first- to fourth-order streams, 105 retention dams were proposed and recognized as possible sites for artificial groundwater recharge. The proposed water harvesting structure may aid in continuously recharging these zones and benefit water resource managers and planners. Thus, various governmental organizations can use the results to identify possible future recharge areas.
  •  
7.
  • Jameel, Mazin, et al. (författare)
  • Spatial and Temporal Assessment of Drought in the Northern Prone of Iraq Using Standardized Precipitation Index
  • 2023
  • Ingår i: Engineering. - : Scientific Research Publishing. - 1947-3931 .- 1947-394X. ; 15:10, s. 691-708
  • Tidskriftsartikel (refereegranskat)abstract
    • Drought becomes a serious issue in Iraq as upstream countries water policies and climate change consequences. It has negative impacts on different sectors, the environment, biodiversity, economy, and water resources. Long periods of severe drought and no rainfall winter are continuing during the last decades and the trend lines of the drought index gravitate toward unrecorded levels. This research studied the drought by using the standardized precipitation index “SPI” by analyzing the rainfall record since 1980 for the northern prone of Iraq which includes Kurdistan Region Governorates “KRG” (Sulaymaniya, Erbil, and Dohuk), Mosul, and Kirkuk to find out the drought pattern, magnitude, and duration, and mapping the results. This index is a very powerful index that is used worldwide when only rainfall data are available. SPI generator is used for more accuracy and confidence. The results show that all governorate has a vital issue and has a drought magnitude passed the thresholds of M = -1.0, -1.5, -2.0, -2.5, -3.0, and -4.0 which means a deficit in the soil moisture content, surface water, and groundwater. In Sulaymaniyah, the record for SPI3, SPI6, and SPI48 respectively is about -3.4, -3.54, and -2.63; in Erbil -2.73, -4.67, and -2.72; in Dohuk -4.22, -4.34, and -2.25; in Mosul -2.57, -2.16: in Kirkuk -3.39, -3.04, and -3.41. It is clear that all governorates have depletion in groundwater except Mosul which has contentious recharge, and in Erbil, both soil moisture and surface water has no huge deficit due to high rainfall and snowpack in the region. The results concluded that the whole region is subject to drought and under threat of water resources depletion; it needs urgent long-term plans in a sustainable manner to manage and conserve those sources and mitigate the climate change consequences.
  •  
8.
  • Kumar, Deepak, et al. (författare)
  • Multi-ahead electrical conductivity forecasting of surface water based on machine learning algorithms
  • 2023
  • Ingår i: Applied water science. - : Springer Nature. - 2190-5487 .- 2190-5495. ; 13:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The present research work focused on predicting the electrical conductivity (EC) of surface water in the Upper Ganga basin using four machine learning algorithms: multilayer perceptron (MLP), co-adaptive neuro-fuzzy inference system (CANFIS), random forest (RF), and decision tree (DT). The study also utilized the gamma test for selecting appropriate input and output combinations. The results of the gamma test revealed that total hardness (TH), magnesium (Mg), and chloride (Cl) parameters were suitable input variables for EC prediction. The performance of the models was evaluated using statistical indices such as Percent Bias (PBIAS), correlation coefficient (R), Willmott’s index of agreement (WI), Index of Agreement (PI), root mean square error (RMSE) and Legate-McCabe Index (LMI). Comparing the results of the EC models using these statistical indices, it was observed that the RF model outperformed the other algorithms. During the training period, the RF algorithm has a small positive bias (PBIAS = 0.11) and achieves a high correlation with the observed values (R = 0.956). Additionally, it shows a low RMSE value (360.42), a relatively good coefficient of efficiency (CE = 0.932), PI (0.083), WI (0.908) and LMI (0.083). However, during the testing period, the algorithm’s performance shows a small negative bias (PBIAS = − 0.46) and a good correlation (R = 0.929). The RMSE value decreases significantly (26.57), indicating better accuracy, the coefficient of efficiency remains high (CE = 0.915), PI (0.033), WI (0.965) and LMI (− 0.028). Similarly, the performance of the RF algorithm during the training and testing periods in Prayagraj. During the training period, the RF algorithm shows a PBIAS of 0.50, indicating a small positive bias. It achieves an RMSE of 368.3, R of 0.909, CE of 0.872, PI of 0.015, WI of 0.921, and LMI of 0.083. During the testing period, the RF algorithm demonstrates a slight negative bias with a PBIAS of  − 0.06. The RMSE reduces significantly to 24.1, indicating improved accuracy. The algorithm maintains a high correlation (R = 0.903) and a good coefficient of efficiency (CE = 0.878). The index of agreement (PI) increases to 0.035, suggesting a better fit. The WI is 0.960, indicating high accuracy compared to the mean value, while the LMI decreases slightly to − 0.038. Based on the comparative results of the machine learning algorithms, it was concluded that RF performed better than DT, CANFIS, and MLP. The study recommended using the current month’s total hardness (TH), magnesium (Mg), and chloride (Cl) parameters as input variables for multi-ahead forecasting of electrical conductivity (ECt+1, ECt+2, and ECt+3) in future studies in the Upper Ganga basin. The findings also indicated that RF and DT models had superior performance compared to MLP and CANFIS models. These models can be applied for multi-ahead forecasting of monthly electrical conductivity at both Varanasi and Prayagraj stations in the Upper Ganga basin.
  •  
9.
  • Singh, Sachin Kumar, et al. (författare)
  • Soil erosion control from trash residues at varying land slopes under simulated rainfall conditions
  • 2023
  • Ingår i: Mathematical Biosciences and Engineering. - : American Institute of Mathematical Sciences. - 1551-0018. ; 20:6, s. 11403-11428
  • Tidskriftsartikel (refereegranskat)abstract
    • Trash mulches are remarkably effective in preventing soil erosion, reducing runoff-sediment transport-erosion, and increasing infiltration. The study was carried out to observe the sediment outflow from sugar cane leaf (trash) mulch treatments at selected land slopes under simulated rainfall conditions using a rainfall simulator of size 10 m × 1.2 m × 0.5 m with the locally available soil material collected from Pantnagar. In the present study, trash mulches with different quantities were selected to observe the effect of mulching on soil loss reduction. The number of mulches was taken as 6, 8 and 10 t/ha, three rainfall intensities viz. 11, 13 and 14.65 cm/h at 0, 2 and 4% land slopes were selected. The rainfall duration was fixed (10 minutes) for every mulch treatment. The total runoff volume varied with mulch rates for constant rainfall input and land slope. The average sediment concentration (SC) and sediment outflow rate (SOR) increased with the increasing land slope. However, SC and outflow decreased with the increasing mulch rate for a fixed land slope and rainfall intensity. The SOR for no mulch-treated land was higher than trash mulch-treated lands. Mathematical relationships were developed for relating SOR, SC, land slope, and rainfall intensity for a particular mulch treatment. It was observed that SOR and average SC values correlated with rainfall intensity and land slope for each mulch treatment. The developed models' correlation coefficients were more than 90%.
  •  
10.
  • Vishwakarma, Dinesh Kumar, et al. (författare)
  • Forecasting of stage-discharge in a non-perennial river using machine learning with gamma test
  • 2023
  • Ingår i: Heliyon. - : Elsevier. - 2405-8440. ; 9:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of the stage-discharge rating curve is useful in designing and planning flood warnings; thus, developing a reliable stage-discharge rating curve is a fundamental and crucial component of water resource system engineering. Since the continuous measurement is often impossible, the stage-discharge relationship is generally used in natural streams to estimate discharge. This paper aims to optimize the rating curve using a generalized reduced gradient (GRG) solver and the test the accuracy and applicability of the hybridized linear regression (LR) with other machine learning techniques, namely, linear regression-random subspace (LR-RSS), linear regression-reduced error pruning tree (LR-REPTree), linear regression-support vector machine (LR-SVM) and linear regression-M5 pruned (LR-M5P) models. An application of these hybrid models was performed and test to modeling the Gaula Barrage stage-discharge problem. For this, 12-year historical stage-discharge data were collected and analyzed. The 12-year historical daily flow data (m3/s) and stage (m) from during the monsoon season, i.e., June to October only from 03/06/2007 to 31/10/2018, were used for discharge simulation. The best suitable combination of input variables for LR, LR-RSS, LR-REPTree, LR-SVM, and LR-M5P models was identified and decided using the gamma test. GRG-based rating curve equations were found to be as effective and more accurate as conventional rating curve equations. The outcomes from GRG, LR, LR-RSS, LR-REPTree, LR-SVM, and LR-M5P models were compared to observed values of daily discharge based on Nash Sutcliffe model efficiency coefficient (NSE), Willmott Index of Agreement (d), Kling-Gupta efficiency (KGE), mean absolute error (MAE), mean bias error (MBE), relative bias in percent (RE), root mean square error (RMSE) Pearson correlation coefficient (PCC) and coefficient of determination (R2). The LR-REPTree model (combination 1: NSE = 0.993, d = 0.998, KGE = 0.987, PCC(r) = 0.997, and R2 = 0.994 and minimum value of RMSE = 0.109, MAE = 0.041, MBE = −0.010 and RE = −0.1%; combination 2; NSE = 0.941, d = 0.984, KGE = 0. 923, PCC(r) = 0. 973, and R2 = 0. 947 and minimum value of RMSE = 0. 331, MAE = 0.143, MBE = −0.089 and RE = −0.9%) performed superior to the GRG, LR, LR-RSS, LR-SVM, and LR-M5P models in all input combinations during the testing period. It was also noticed that the performance of the alone LR and its hybrid models (i.e., LR-RSS, LR-REPTree, LR-SVM, and LR-M5P) was better than the conventional stage-discharge rating curve, including the GRG method.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy