SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abelein A) srt2:(2022)"

Sökning: WFRF:(Abelein A) > (2022)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, G., et al. (författare)
  • Abilities of the BRICHOS domain to prevent neurotoxicity and fibril formation are dependent on a highly conserved Asp residue
  • 2022
  • Ingår i: RSC Chemical Biology. - : Royal Society of Chemistry (RSC). - 2633-0679. ; 3:11, s. 1342-1358
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteins can self-assemble into amyloid fibrils or amorphous aggregates and thereby cause disease. Molecular chaperones can prevent both these types of protein aggregation, but to what extent the respective mechanisms are overlapping is not fully understood. The BRICHOS domain constitutes a disease-associated chaperone family, with activities against amyloid neurotoxicity, fibril formation, and amorphous protein aggregation. Here, we show that the activities of BRICHOS against amyloid-induced neurotoxicity and fibril formation, respectively, are oppositely dependent on a conserved aspartate residue, while the ability to suppress amorphous protein aggregation is unchanged by Asp to Asn mutations. The Asp is evolutionarily highly conserved in >3000 analysed BRICHOS domains but is replaced by Asn in some BRICHOS families. The conserved Asp in its ionized state promotes structural flexibility and has a pKa value between pH 6.0 and 7.0, suggesting that chaperone effects can be differently affected by physiological pH variations. 
  •  
2.
  • Kaldmäe, Margit, et al. (författare)
  • A “spindle and thread” mechanism unblocks p53 translation by modulating N-terminal disorder
  • 2022
  • Ingår i: Structure. - : Elsevier BV. - 0969-2126 .- 1878-4186. ; 30:5, s. 733-742, e1-e7
  • Tidskriftsartikel (refereegranskat)abstract
    • Disordered proteins pose a major challenge to structural biology. A prominent example is the tumor suppressor p53, whose low expression levels and poor conformational stability hamper the development of cancer therapeutics. All these characteristics make it a prime example of “life on the edge of solubility.” Here, we investigate whether these features can be modulated by fusing the protein to a highly soluble spider silk domain (NT∗). The chimeric protein displays highly efficient translation and is fully active in human cancer cells. Biophysical characterization reveals a compact conformation, with the disordered transactivation domain of p53 wrapped around the NT∗ domain. We conclude that interactions with NT∗ help to unblock translation of the proline-rich disordered region of p53. Expression of partially disordered cancer targets is similarly enhanced by NT∗. In summary, we demonstrate that inducing co-translational folding via a molecular “spindle and thread” mechanism unblocks protein translation in vitro.
  •  
3.
  •  
4.
  • Jiang, RC, et al. (författare)
  • Autophagy Impairment in App Knock-in Alzheimer's Model Mice
  • 2022
  • Ingår i: Frontiers in aging neuroscience. - : Frontiers Media SA. - 1663-4365. ; 14, s. 878303-
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer’s disease (AD) is characterized by impaired protein homeostasis leading to amyloid-β peptide (Aβ) amyloidosis. Amyloid precursor protein (APP) knock-in mice exhibit robust Aβ pathology, providing possibilities to determine its effect on protein homeostasis including autophagy. Here we compared human AD postmortem brain tissue with brains from two different types of App knock-in mice, AppNL–F and AppNL–G–F mice, exhibiting AD-like pathology. In AD postmortem brains, p62 levels are increased and p62-positive staining is detected in neurons, including potential axonal beadings, as well as in the vasculature and in corpora amylacea. Interestingly, p62 is also increased in the neurons in 12-month-old AppNL–G–F mice. In brain homogenates from 12-month-old AppNL–G–F mice, both p62 and light chain 3 (LC3)-II levels are increased as compared to wildtype (WT) mice, indicating inhibited autophagy. Double immunostaining for LC3 and Aβ revealed LC3-positive puncta in hippocampus of 24-month-old AppNL–F mice around the Aβ plaques which was subsequently identified by electron microscopy imaging as an accumulation of autophagic vacuoles in dystrophic neurites around the Aβ plaques. Taken together, autophagy is impaired in App knock-in mice upon increased Aβ pathology, indicating that App knock-in mouse models provide a platform for understanding the correlation between Aβ and autophagy.
  •  
5.
  • Jiang, R. C., et al. (författare)
  • Increased CSF-decorin predicts brain pathological changes driven by Alzheimer's A beta amyloidosis
  • 2022
  • Ingår i: Acta Neuropathologica Communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebrospinal fluid (CSF) biomarkers play an important role in diagnosing Alzheimer's disease (AD) which is characterized by amyloid-beta (A beta) amyloidosis. Here, we used two App knock-in mouse models, App(NL-F/NL-F) and App(NL-G-F/NL-G-F), exhibiting AD-like A beta pathology to analyze how the brain pathologies translate to CSF proteomes by label-free mass spectrometry (MS). This identified several extracellular matrix (ECM) proteins as significantly altered in App knock-in mice. Next, we compared mouse CSF proteomes with previously reported human CSF MS results acquired from patients across the AD spectrum. Intriguingly, the ECM protein decorin was similarly and significantly increased in both App(NL-F/NL-F) and App(NL-G-F/NL-G-F) mice, strikingly already at three months of age in the App(NL-F/NL-F) mice and preclinical AD subjects having abnormal CSF-A beta 42 but normal cognition. Notably, in this group of subjects, CSF-decorin levels positively correlated with CSF-A beta 42 levels indicating that the change in CSF-decorin is associated with early A beta amyloidosis. Importantly, receiver operating characteristic analysis revealed that CSF-decorin can predict a specific AD subtype having innate immune activation and potential choroid plexus dysfunction in the brain. Consistently, in App(NL-F/NL-F) mice, increased CSF-decorin correlated with both AP plaque load and with decorin levels in choroid plexus. In addition, a low concentration of human A beta 42 induces decorin secretion from mouse primary neurons. Interestingly, we finally identify decorin to activate neuronal autophagy through enhancing lysosomal function. Altogether, the increased CSF-decorin levels occurring at an early stage of A beta amyloidosis in the brain may reflect pathological changes in choroid plexus, present in a subtype of AD subjects.
  •  
6.
  • Zhong, Xueying, et al. (författare)
  • Amyloid Fibril Formation of Arctic Amyloid-β 1-42 Peptide is Efficiently Inhibited by the BRICHOS Domain
  • 2022
  • Ingår i: ACS Chemical Biology. - : American Chemical Society (ACS). - 1554-8929 .- 1554-8937. ; 17:8, s. 2201-2211
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid-β peptide (Aβ) aggregation is one of the hallmarks of Alzheimer's disease (AD). Mutations in Aβ are associated with early onset familial AD, and the Arctic mutant E22G (Aβarc) is an extremely aggregation-prone variant. Here, we show that BRICHOS, a natural anti-amyloid chaperone domain, from Bri2 efficiently inhibits aggregation of Aβarcby mainly interfering with secondary nucleation. This is qualitatively different from the microscopic inhibition mechanism for the wild-type Aβ, against which Bri2 BRICHOS has a major effect on both secondary nucleation and fibril end elongation. The monomeric Aβ42arcpeptide aggregates into amyloid fibrils significantly faster than wild-type Aβ (Aβ42wt), as monitored by thioflavin T (ThT) binding, but the final ThT intensity was strikingly lower for Aβ42arccompared to Aβ42wtfibrils. The Aβ42arcpeptide formed large aggregates, single-filament fibrils, and multiple-filament fibrils without obvious twists, while Aβ42wtfibrils displayed a polymorphic pattern with typical twisted fibril architecture. Recombinant human Bri2 BRICHOS binds to the Aβ42arcfibril surface and interferes with the macroscopic fibril arrangement by promoting single-filament fibril formation. This study provides mechanistic insights on how BRICHOS efficiently affects the aggressive Aβ42arcaggregation, resulting in both delayed fibril formation kinetics and altered fibril structure. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy