SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abrahamsson Ninnie) srt2:(2014)"

Sökning: WFRF:(Abrahamsson Ninnie) > (2014)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Garcia-Bennett, Alfonso E., et al. (författare)
  • In vitro generation of motor neuron precursors from mouse embryonic stem cells using mesoporous nanoparticles
  • 2014
  • Ingår i: Nanomedicine. - 1743-5889 .- 1748-6963. ; 9:16, s. 2457-2466
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Stem cell-derived motor neurons (MNs) are utilized to develop replacement strategies for spinal cord disorders. Differentiation of embryonic stem cells into MN precursors involves factors and their repeated administration. We investigated if delivery of factors loaded into mesoporous nanoparticles could be effective for stem cell differentiation in vitro. Materials & methods: We used a mouse embryonic stem cell line expressing green fluorescent protein under the promoter for the MN-specific gene Hb9 to visualize the level of MN differentiation. The differentiation of stem cells was evaluated by expression of MN-specific transcription factors monitored by quantitative real-time PCR reactions and immunocytochemistry. Results: Mesoporous nanoparticles have strong affiliation to the embryoid bodies, penetrate inside the embryoid bodies and come in contact with differentiating cells. Conclusion: Repeated administration of soluble factors into a culture medium can be avoided due to a sustained release effect using mesoporous silica.
  •  
2.
  • Garcia-Bennett, Alfonso, et al. (författare)
  • In vitro generation of motor neuron precursors from mouse embryonic stem cells using mesoporous nanoparticles
  • 2014
  • Ingår i: Nanomedicine. - : Future Medicine Ltd. - 1743-5889 .- 1748-6963. ; 9:16, s. 2457-2466
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Stem cell-derived motor neurons (MNs) are utilized to develop replacement strategies for spinal cord disorders. Differentiation of embryonic stem cells into MN precursors involves factors and their repeated administration. We investigated if delivery of factors loaded into mesoporous nanoparticles could be effective for stem cell differentiation in vitro.Materials & methods: We used a mouse embryonic stem cell line expressing green fluorescent protein under the promoter for the MN-specific gene Hb9 to visualize the level of MN differentiation. The differentiation of stem cells was evaluated by expression of MN-specific transcription factors monitored by quantitative real-time PCR reactions and immunocytochemistry.Results: Mesoporous nanoparticles have strong affiliation to the embryoid bodies, penetrate inside the embryoid bodies and come in contact with differentiating cells.Conclusion: Repeated administration of soluble factors into a culture medium can be avoided due to a sustained release effect using mesoporous silica.
  •  
3.
  • Trolle, Carl, et al. (författare)
  • Boundary cap neural crest stem cells homotopically implanted to the injured dorsal root transitional zone give rise to different types of neurons and glia in adult rodents
  • 2014
  • Ingår i: BMC Neuroscience. - : BioMed Central. - 1471-2202. ; 15, s. 60-
  • Tidskriftsartikel (refereegranskat)abstract
    • The boundary cap is a transient group of neural crest-derived cells located at the presumptive dorsal root transitional zone (DRTZ) when sensory axons enter the spinal cord during development. Later, these cells migrate to dorsal root ganglia and differentiate into subtypes of sensory neurons and glia. After birth when the DRTZ is established, sensory axons are no longer able to enter the spinal cord. Here we explored the fate of mouse bNCSCs implanted to the uninjured DRTZ after dorsal root avulsion for their potential to assist sensory axon regeneration. Grafted cells showed extensive survival and differentiation after transplantation to the avulsed DRTZ. Transplanted cells located outside the spinal cord organized elongated tubes of Sox2/GFAP expressing cells closely associated with regenerating sensory axons or appeared as small clusters on the surface of the spinal cord. Others, migrating into the host spinal cordas single cells, differentiated to spinal cord neurons with different neurotransmitter characteristics, extensive fiber organization, and in some cases surrounded by glutamatergic terminal-like profiles. These findings demonstrate that bNCSCs implanted at the site of dorsal root avulsion injury display remarkable differentiation plasticity inside the spinal cord and in the peripheral compartment where they organize tubes associated with regenerating sensory fibers. These properties offer a basis for exploring the ability of bNCSCs to assist regeneration of sensory axons into the spinal cord and replace lost neurons in the injured spinal cord.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy