SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abramov Viktor) srt2:(2015-2019)"

Sökning: WFRF:(Abramov Viktor) > (2015-2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Musonda, John (författare)
  • Orthogonal Polynomials, Operators and Commutation Relations
  • 2017
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Orthogonal polynomials, operators and commutation relations appear in many areas of mathematics, physics and engineering where they play a vital role. For instance, orthogonal functions in general are central to the development of Fourier series and wavelets which are essential to signal processing. In particular, as demonstrated in this thesis, orthogonal polynomials can be used to establish the L2-boundedness of singular integral operators which is a fundamental problem in harmonic analysis and a subject of extensive investigations. The Lp-convergence of Fourier series is closely related to the Lp-boundedness of singular integral operators. Many important relations in physical sciences are represented by operators satisfying various commutation relations. Such commutation relations play key roles in such areas as quantum mechanics, wavelet analysis, representation theory, spectral theory, and many others.This thesis consists of three main parts. The first part presents a new system of orthogonal polynomials, and establishes its relation to the previously studied systems in the class of Meixner–­Pollaczek polynomials. Boundedness properties of two singular integral operators of convolution type are investigated in the Hilbert spaces related to the relevant orthogonal polynomials. Orthogonal polynomials are used to prove boundedness in the weighted spaces and Fourier analysis is used to prove boundedness in the translation invariant case. It is proved in both cases that the two operators are bounded on L2-spaces, and estimates of the norms are obtained.The second part extends the investigation of the boundedness properties of the two singular integral operators to Lp-spaces on the real line, both in the weighted and unweighted spaces. It is proved that both operators are bounded on these spaces and estimates of the norms are obtained. This is achieved by first proving boundedness for L2 and weak boundedness for L1, and then using interpolation to obtain boundedness for the intermediate spaces. To obtain boundedness for the remaining spaces, duality is used in the translation invariant case, while the weighted case is partly based on the methods developed by M. Riesz in his paper of 1928 for the conjugate function operator.The third and final part derives simple and explicit formulas for reordering elements in an algebra with three generators and Lie type relations. Centralizers and centers are computed as an example of an application of the formulas.
  •  
2.
  • Musonda, John, 1981- (författare)
  • Reordering in Noncommutative Algebras, Orthogonal Polynomials and Operators
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The main object studied in this thesis is the multi-parametric family of unital associative complex algebras generated by the element $Q$ and the finite or infinite set $\{S_j\}_{j\in J}$ of elements satisfying the commutation relations $S_jQ=\sigma_j(Q)S_j$, where $\sigma_j$ is a polynomial for all $j\in J$. A concrete representation is given by the operators $Q_x(f)(x)=xf(x)$ and $\alpha_{\sigma_j}(f)(x)=f(\sigma_j(x))$ acting on polynomials or other suitable functions. The main goal is to reorder arbitrary elements in this family and some of its generalizations, and to study properties of operators in some representing operator algebras, including their connections to orthogonal polynomials. For $J=\{1\}$ and $\sigma(x)=x+1$, the above commutation relations reduce to the famous classical Heisenberg--Lie commutation relation $SQ-QS=S$. Reordering an element in $S$ and $Q$ means to bring it, using the commutation relation, into a form where all elements $Q$ stand either to the left or to the right. For example, $SQ^2=Q^2S+2QS+S$. In general, one can use the commutation relation $SQ-QS=S$ successively and transform for any positive integer $n$ the element $SQ^n$ into a form where all elements $Q$ stand to the left. The coefficients which appear upon reordering in this case are the binomial coefficients. General reordering formulas for arbitrary elements in noncommutative algebras defined by commutation relations are important in many research directions, open problems and applications of the algebras and their operator representations. In investigation of the structure, representation theory and applications of noncommutative algebras, an important role is played by the explicit description of suitable normal forms for noncommutative expressions or functions of generators. Further investigation of the operator representations of the commutation relations by difference type operators on Hilbert function spaces leads to interesting connections to functional analysis and orthogonal polynomials. This thesis consists of two main parts. The first part is devoted to the multi-parametric family of algebras introduced above. General reordering formulas for arbitrary elements in this family are derived, generalizing some well-known results. As an example of an application of the formulas, centralizers and centers are computed. Some operator representations of the above algebras are also described, including considering them in the context of twisted derivations. The second part of this thesis is devoted to a special representation of these algebras by difference operators associated with action by shifts on the complex plane. It is shown that there are three systems of orthogonal polynomials of the class of Meixner--Pollaczek polynomials that are connected by these operators. Boundedness properties of two singular integral operators of convolution type connected to these difference operators are investigated in the Hilbert spaces related to these systems of orthogonal polynomials. Orthogonal polynomials are used to prove boundedness in the weighted spaces and Fourier analysis is used to prove boundedness in the translation invariant case. It is proved in both cases that the two operators are bounded on the $L^2$-spaces and estimates of the norms are obtained. This investigation is also extended to $L^p$-spaces on the real line where it is proved again that the two operators are bounded.
  •  
3.
  • Qi, Xiaomin, 1987- (författare)
  • Fixed points, fractals, iterated function systems and generalized support vector machines
  • 2016
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis, fixed point theory is used to construct a fractal type sets and to solve data classification problem. Fixed point method, which is a beautiful mixture of analysis, topology, and geometry has been revealed as a very powerful and important tool in the study of nonlinear phenomena. The existence of fixed points is therefore of paramount importance in several areas of mathematics and other sciences. In particular, fixed points techniques have been applied in such diverse fields as biology, chemistry, economics, engineering, game theory and physics. In Chapter 2 of this thesis it is demonstrated how to define and construct a fractal type sets with the help of iterations of a finite family of generalized F-contraction mappings, a class of mappings more general than contraction mappings, defined in the context of b-metric space. This leads to a variety of results for iterated function system satisfying a different set of contractive conditions. The results unify, generalize and extend various results in the existing literature. In Chapter 3, the theory of support vector machine for linear and nonlinear classification of data and the notion of generalized support vector machine is considered. In the thesis it is also shown that the problem of generalized support vector machine can be considered in the framework of generalized variation inequalities and results on the existence of solutions are established.
  •  
4.
  • Tumwesigye, Alex Behakanira, 1982- (författare)
  • On one-dimensional dynamical systems and commuting elements in non-commutative algebras
  • 2016
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis work is about commutativity which is a very important topic in mathematics, physics, engineering and many other fields. Two processes are said to be commutative if the order of "operation" of these processes does not matter. A typical example of two processes in real life that are not commutative is the process of opening the door and the process of going through the door. In mathematics, it is well known that matrix multiplication is not always commutative. Commutating operators play an essential role in mathematics, physics engineering and many other fields. A typical example of the importance of commutativity comes from signal processing. Signals pass through filters (often called operators on a Hilbert space by mathematicians) and commutativity of two operators corresponds to having the same result even when filters are interchanged. Many important relations in mathematics, physics and engineering are represented by operators satisfying a number of commutation relations.In chapter two of this thesis we treat commutativity of monomials of operatos satisfying certain commutation relations in relation to one-dimensional dynamical systems. We derive explicit conditions for commutativity of the said monomials in relation to the existence of periodic points of certain one-dimensional dynamical systems. In chapter three, we treat the crossed product algebra for the algebra of piecewise constant functions on given set, describe the commutant of this algebra of functions which happens to be the maximal commutative subalgebra of the crossed product containing this algebra. In chapter four, we give a characterization of the commutant for the algebra of piecewise constant functions on the real line, by comparing commutants for a non decreasing sequence of algebras.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy