SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Adner Mikael) srt2:(2015-2019)"

Sökning: WFRF:(Adner Mikael) > (2015-2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lei, Ying, et al. (författare)
  • Vaccination against IL-33 Inhibits Airway Hyperresponsiveness and Inflammation in a House Dust Mite Model of Asthma
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • In several clinical and experimental studies IL-33 and its receptor have been found to play important roles in the development of asthma and allergic airway inflammation. We evaluated the effects of vaccination against IL-33 in a mouse model of airway inflammation induced by house dust mite (HDM) allergen. Balb/c mice received the IL-33 vaccine subcutaneously, followed by intranasal administration of HDM for up to six weeks. Vaccination against IL-33 induced high titers of specific anti-IL-33 IgG antibodies that inhibited HDM-induced airway hyperresponsiveness (AHR) in the conducting airways and tissue damping. The vaccination also attenuated the HDM-induced elevation in the numbers of eosinophils in bronchoalveolar lavage fluid (BALF) and suppressed the accumulation of inflammatory cells in the airways. Furthermore, the levels of IL-17A, IL-25, IL-33 and TSLP in lung tissue homogenates were reduced by vaccination against IL-33. These observations demonstrate that vaccination against IL-33 inhibits HDM-induced development of AHR, airway inflammation and production of inflammatory cytokines. The results also indicate an important role of IL-33 in the regulation of AHR of the distal lung compartments. Thus, administration of such a vaccine is potentially an effective therapeutic tool for treating allergic asthma.
  •  
2.
  • Ravindran, Avinash, et al. (författare)
  • An Optimized Protocol for the Isolation and Functional Analysis of Human Lung Mast Cells
  • 2018
  • Ingår i: Frontiers in Immunology. - : FRONTIERS MEDIA SA. - 1664-3224. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Mast cells are tissue-resident inflammatory cells defined by their high granularity and surface expression of the high-affinity IgE receptor, Fc + RI, and CD117/KIT, the receptor for stem cell factor (SCF). There is a considerable heterogeneity among mast cells, both phenotypically and functionally. Human mast cells are generally divided into two main subtypes based on their protease content; the mucosa-associated MCT (tryptase positive and chymase negative mast cell) and the connective tissue associated-residing MCTC (tryptase and chymase positive mast cell). Human lung mast cells exhibit heterogeneity in terms of cellular size, expression of cell surface receptors, and secreted mediators. However, knowledge about human lung mast cell heterogeneity is restricted to studies using immunohistochemistry or purified mast cells. Whereas the former is limited by the number of cellular markers that can be analyzed simultaneously, the latter suffers from issues related to cell yield.Aim: To develop a protocol that enables isolation of human lung mast cells at high yields for analysis of functional properties and detailed analysis using single-cell based analyses of protein (flow cytometry) or RNA (RNA-sequencing) expression.Methods: Mast cells were isolated from human lung tissue by a sequential combination of washing, enzymatic digestion, mechanical disruption, and density centrifugation using Percoll (WEMP). As a comparison, we also isolated mast cells using a conventional enzyme-based protocol. The isolated cells were analyzed by flow cytometry.Results: We observed a significant increase in the yield of total human lung CD45(+) immune cells and an even more pronounced increase in the yield of CD117(+) mast cells with the WEMP protocol in comparison to the conventional protocols. In contrast, the frequency of the rare lymphocyte subset innate lymphoid cells group 2 (ILC2) did not differ between the two methods.Conclusion: The described WEMP protocol results in a significant increase in the yield of human lung mast cells compared to a conventional protocol. Additionally, the WEMP protocol enables simultaneous isolation of different immune cell populations such as lymphocytes, monocytes, and granulocytes while retaining their surface marker expression that can be used for advanced single-cell analyses including multi-color flow cytometry and RNA-sequencing.
  •  
3.
  • Rönnberg, Elin, et al. (författare)
  • Divergent Effects of Acute and Prolonged Interleukin 33 Exposure on Mast Cell IgE-Mediated Functions
  • 2019
  • Ingår i: Frontiers in Immunology. - : FRONTIERS MEDIA SA. - 1664-3224. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Epithelial cytokines, including IL-33 and Thymic stromal lymphopoietin (TSLP), have attracted interest because of their roles in chronic allergic inflammation-related conditions such as asthma. Mast cells are one of the major targets of IL-33, to which they respond by secreting cytokines. Most studies performed thus far have investigated the acute effects of IL-33 on mast cells. In the current study, we investigated how acute vs. prolonged exposure of mast cells to IL-33 and TSLP affects mediator synthesis and IgE-mediated activation.Methods: Human lung mast cells (HLMCs), cord blood-derived mast cells (CBMCs), and the ROSA mast cell line were used for this study. Receptor expression and the levels of mediators were measured after treatment with IL-33 and/or TSLP.Results: IL-33 induced the release of cytokines. Prolonged exposure to IL-33 increased while TSLP reduced intracellular levels of tryptase. Acute IL-33 treatment strongly potentiated IgE-mediated activation. In contrast, 4 days of exposure to IL-33 decreased IgE-mediated activation, an effect that was accompanied by a reduction in Fc epsilon RI expression.Conclusion: We show that IL-33 plays dual roles in mast cells, in which its acute effects include cytokine release and the potentiation of IgE-mediated degranulation, whereas prolonged exposure to IL-33 reduces IgE-mediated activation. We conclude that mast cells act quickly in response to the alarmin IL-33 to initiate an acute inflammatory response, whereas extended exposure to IL-33 during prolonged inflammation reduces IgE-mediated responses. This negative feedback effect suggests the presence of a novel regulatory pathway that modulates IgE-mediated human mast cell responses.
  •  
4.
  • Zoltowska Nilsson, Anna Maria, et al. (författare)
  • Mast cell dependent IL-33/ST2 signaling is protective against the development of airway hyperresponsiveness in a house dust mite mouse model of asthma
  • 2018
  • Ingår i: American Journal of Physiology - Lung cellular and Molecular Physiology. - : American Physiological Society. - 1040-0605 .- 1522-1504. ; 314:3, s. L484-L492
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin-33 (IL-33) and its receptor ST2 have been influentially associated to the pathophysiology of asthma. Due to the divergent roles of IL-33 in regulating mast cell functions, there is a need to further characterize IL-33/ST2-dependent mast cell responses and their significance in the context of asthma. This study aimed to investigate how IL-33/ST2-dependent mast cell responses contribute to the development of airway hyperresponsiveness (AHR) and airway inflammation in a mouse model of house dust mite (HDM) induced asthma. Mast cell deficient C57BL/6-KitW-sh (Wsh) mice engrafted with either wild-type (Wsh+MC-WT) or ST2 deficient bone marrow derived mast cells (Wsh+MC-ST2KO) were exposed to HDM delivered intranasally. An exacerbated development of AHR in response to HDM was seen in Wsh+MC-ST2KO compared to Wsh+MC-WT mice. The contribution of this IL-33/ST2-dependent mast cell response to AHR seems to reside within the smaller airways in the peripheral parts of the lung, as suggested by the isolated yet marked effect on tissue resistance. Considering the absence of a parallel increase in cellular inflammation in BALF and lung, the aggravated AHR in Wsh+MC-ST2KO mice, seems to be independent of cellular inflammation. We observed an association between the elevated AHR and reduced PGE2 levels in bronchoalveolar lavage fluid. Due to the protective properties of PGE2 in airway responses, it is conceivable that IL-33/ST2-dependent mast cell induction of PGE2 could be responsible for the dampening effect on AHR. In conclusion, we reveal that IL-33/ST2-dependent mast cell responses can have a protective, rather than causative role in the development of AHR.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy