SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Adolfsson Jörgen) srt2:(2001-2004)"

Sökning: WFRF:(Adolfsson Jörgen) > (2001-2004)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adolfsson, Jörgen (författare)
  • Expression and role of the cytokine tyrosine kinase receptor flt3 in early hematopoiesis
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Mature blood cells are crucial for life, but they have a short lifetime and thus have to be replaced. These mature blood cells are produced by lineage restricted progenitors, which themselves are generated by rare multipotent hematopoietic stem cells (HSCs) in a highly dynamic process called hematopoiesis. In addition to the ability of HSCs to generate all blood cell lineages, they possess the unique property of self-renewal, a process in which a HSC, during a cell division generate at least one daughter cell identical to the parental cell. The maintenance and regulation of HSCs and earliest stages of lineage development are partly controlled by soluble and membrane bound regulators called cytokines. The focus in this thesis has been on the cytokine tyrosine kinase receptor flt3 and its ligand and their role in regulating HSCs and the earliest progenitors in adult murine bone marrow (BM). Earlier studies had implicated a role for flt3 and its ligand in the maintenance of HSCs. When studying mice with targeted deletion of the flt3 ligand (FL), we failed to find any role of flt3 and its ligand in HSC regulation. However, the generation of the common lymphoid progenitor (CLP) and earliest stages of B- and T cell development were severely affected, but not myeloid progenitors or later stages of lymphoid development. Based on flt3 expression, we subfractionated the Lin(-)Sca-1(+)c-kit(+) (LSK) stem cell pool in mouse bone marrow. In contrast to LSKflt3- cells, which sustained multilineage long-term reconstitution, LSKflt3+ cells generated only short-term lymphoid dominated reconstitution when injected into lethally ablated recipients. We also demonstrated the hierarchical relationship at the earliest stages of hematopoiesis, in that LSKflt3- HSCs generate LSKflt3+ cells, which generate the CLP but not the LSKflt3- cells. In the classical model of the hematopoietic hierarchy, the first lineage commitment step of HSCs results in a strict separation into distinct lymphoid and myeloid pathways, generating the recently identified CLP and the common myeloid progenitor (CMP). However, in sharp contrast to LSKflt3-, cells which could generate all blood cell lineages, LSK cells expressing flt3 could not generate megakaryocytes or erythroid cells. Thus, these finding together with the above mentioned relationship between the LSKflt3-, LSKflt3+ and CLP do not support the classical hematopoietic hierarchy model depicting the first lineage commitment generating a strict separation of lymphoid and myeloid pathways. The LSK population contains all LT-HSC activity. However, this population is not homogenous neither in phenotype or function and it has been proposed to contain at least two populations, one with long-term reconstitution (LTR) potential and one with short-term reconstitution potential. Based on the expression of CD34 and flt3 within the adult LSK stem cell pool we were able to subfractionate short-term hematopoietic stem cells (ST-HSC) from the LT-HSCs. In contrast to the LSKCD34-flt3- and LSKCD34+flt3+ cells, the LSKCD34+flt3- is highly enriched for CFU-S activity and capable of rescuing lethally irradiated recipients, fulfilling the criteria of ST-HSCs.
  •  
2.
  • Adolfsson, Jörgen, et al. (författare)
  • Upregulation of Flt3 expression within the bone marrow Lin(-)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity
  • 2001
  • Ingår i: Immunity. - 1074-7613. ; 15:4, s. 659-669
  • Tidskriftsartikel (refereegranskat)abstract
    • Flt3 has emerged as a potential regulator of hematopoietic stem cells (HSC). Sixty percent of cells in the mouse marrow Lin(-)Sca1(+)c-kit(+) HSC pool expressed flt3. Although single cell cloning showed comparable high proliferative, myeloid, B, and T cell potentials of Lin(-)Sca1(+)c-kit(+)flt3(+) and Lin(-)Sca1(+)c-kit(+)flt3(-) cells, only Lin(-)Sca1(+)c-kit(+)flt3(-) cells supported sustained multilineage reconstitution. In striking contrast, Lin(-)Sca1(+)c-kit(+)flt3(+) cells rapidly and efficiently reconstituted B and T lymphopoiesis, whereas myeloid reconstitution was exclusively short term. Unlike c-kit, activation of flt3 failed to support survival of HSC, whereas only flt3 mediated survival of Lin(-)Sca1(+)c-kit(+)flt3(+) reconstituting cells. Phenotypic and functional analysis support that Lin(-)Sca1(+)c-kit(+)flt3(+) cells are progenitors for the common lymphoid progenitor. Thus, upregulation of flt3 expression on Lin(-)Sca1(+)c-kit(+) HSC cells is accompanied by loss of self-renewal capacity but sustained lymphoid-restricted reconstitution potential.
  •  
3.
  •  
4.
  • Bryder, David, et al. (författare)
  • Self-renewal of multipotent long-term repopulating hematopoietic stem cells is negatively regulated by Fas and tumor necrosis factor receptor activation
  • 2001
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 194:7, s. 941-952
  • Tidskriftsartikel (refereegranskat)abstract
    • Multipotent self-renewing hematopoietic stem cells (HSCs) are responsible for reconstitution of all blood cell lineages. Whereas growth stimulatory cytokines have been demonstrated to promote HSC self-renewal, the potential role of negative regulators remains elusive. Receptors for tumor necrosis factor (TNF) and Fas ligand have been implicated as regulators of steady-state hematopoiesis, and if overexpressed mediate bone marrow failure. However, it has been proposed that hematopoietic progenitors rather than stem cells might be targeted by Fas activation. Here, murine Lin(-)Sca1(+)c-kit(+) stem cells revealed little or no constitutive expression of Fas and failed to respond to an agonistic anti-Fas antibody. However, if induced to undergo self-renewal in the presence of TNF-alpha, the entire short and long-term repopulating HSC pool acquired Fas expression at high levels and concomitant activation of Fas suppressed in vitro growth of Lin(-)Sca1(+)c-kit(+) cells cultured at the single cell level. Moreover, Lin(-)Sca1(+)c-kit(+) stem cells undergoing self-renewal divisions in vitro were severely and irreversibly compromised in their short- and long-term multilineage reconstituting ability if activated by TNF-alpha or through Fas, providing the first evidence for negative regulators of HSC self-renewal.
  •  
5.
  • Sitnicka Quinn, Ewa, et al. (författare)
  • Key Role of flt3 Ligand in Regulation of the Common Lymphoid Progenitor but Not in Maintenance of the Hematopoietic Stem Cell Pool.
  • 2002
  • Ingår i: Immunity. - 1074-7613. ; 17:4, s. 463-472
  • Tidskriftsartikel (refereegranskat)abstract
    • The first lineage commitment step of hematopoietic stem cells (HSC) results in separation into distinct lymphoid and myeloid differentiation pathways, reflected in the generation of common lymphoid and myeloid progenitors (CLP and CMP, respectively). In this report we present the first evidence for a nonredundant regulator of this process, in that adult mice deficient in expression of the flt3 ligand (FL) have severely (10-fold) reduced levels of the CLP, accompanied by reductions in the earliest identifiable B and T cell progenitors. In contrast, CMP and HSC are unaffected in FL-deficient mice. Noteworthy, CLP express high levels of both the flt3 receptor and ligand, indicating a potential autocrine role of FL in regulation of the earliest lymphoid commitment step from HSC.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy