SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Agüero A.) srt2:(2020-2023)"

Sökning: WFRF:(Agüero A.) > (2020-2023)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bravo, L, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Tabiri, S, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
4.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
5.
  •  
6.
  • Ash, G. I., et al. (författare)
  • Establishing a Global Standard for Wearable Devices in Sport and Exercise Medicine: Perspectives from Academic and Industry Stakeholders
  • 2021
  • Ingår i: Sports Medicine. - : Springer Science and Business Media LLC. - 0112-1642 .- 1179-2035. ; 51, s. 2237-2250
  • Tidskriftsartikel (refereegranskat)abstract
    • Millions of consumer sport and fitness wearables (CSFWs) are used worldwide, and millions of datapoints are generated by each device. Moreover, these numbers are rapidly growing, and they contain a heterogeneity of devices, data types, and contexts for data collection. Companies and consumers would benefit from guiding standards on device quality and data formats. To address this growing need, we convened a virtual panel of industry and academic stakeholders, and this manuscript summarizes the outcomes of the discussion. Our objectives were to identify (1) key facilitators of and barriers to participation by CSFW manufacturers in guiding standards and (2) stakeholder priorities. The venues were the Yale Center for Biomedical Data Science Digital Health Monthly Seminar Series (62 participants) and the New England Chapter of the American College of Sports Medicine Annual Meeting (59 participants). In the discussion, stakeholders outlined both facilitators of (e.g., commercial return on investment in device quality, lucrative research partnerships, and transparent and multilevel evaluation of device quality) and barriers (e.g., competitive advantage conflict, lack of flexibility in previously developed devices) to participation in guiding standards. There was general agreement to adopt Keadle et al.'s standard pathway for testing devices (i.e., benchtop, laboratory, field-based, implementation) without consensus on the prioritization of these steps. Overall, there was enthusiasm not to add prescriptive or regulatory steps, but instead create a networking hub that connects companies to consumers and researchers for flexible guidance navigating the heterogeneity, multi-tiered development, dynamicity, and nebulousness of the CSFW field.
  •  
7.
  • González, Rodrigo A., et al. (författare)
  • An EM Algorithm for Lebesgue-sampled State-space Continuous-time System Identification
  • 2023
  • Ingår i: IFAC-PapersOnLine. - : Elsevier BV. ; , s. 4204-4209
  • Konferensbidrag (refereegranskat)abstract
    • This paper concerns the identification of continuous-time systems in state-space form that are subject to Lebesgue sampling. Contrary to equidistant (Riemann) sampling, Lebesgue sampling consists of taking measurements of a continuous-time signal whenever it crosses fixed and regularly partitioned thresholds. The knowledge of the intersample behavior of the output data is exploited in this work to derive an expectation-maximization (EM) algorithm for parameter estimation of the state-space and noise covariance matrices. For this purpose, we use the incremental discrete-time equivalent of the system, which leads to EM iterations of the continuous-time state-space matrices that can be computed by standard filtering and smoothing procedures. The effectiveness of the identification method is tested via Monte Carlo simulations.
  •  
8.
  • L. Cedeño, Angel, et al. (författare)
  • On Filtering and Smoothing Algorithms for Linear State-Space Models Having Quantized Output Data
  • 2023
  • Ingår i: Mathematics. - : MDPI AG. - 2227-7390.
  • Tidskriftsartikel (refereegranskat)abstract
    • The problem of state estimation of a linear, dynamical state-space system where the output is subject to quantization is challenging and important in different areas of research, such as control systems, communications, and power systems. There are a number of methods and algorithms to deal with this state estimation problem. However, there is no consensus in the control and estimation community on (1) which methods are more suitable for a particular application and why, and (2) how these methods compare in terms of accuracy, computational cost, and user friendliness. In this paper, we provide a comprehensive overview of the state-of-the-art algorithms to deal with state estimation subject to quantized measurements, and an exhaustive comparison among them. The comparison analysis is performed in terms of the accuracy of the state estimation, dimensionality issues, hyperparameter selection, user friendliness, and computational cost. We consider classical approaches and a new development in the literature to obtain the filtering and smoothing distributions of the state conditioned to quantized data. The classical approaches include the extended Kalman filter/smoother, the quantized Kalman filter/smoother, the unscented Kalman filter/smoother, and the sequential Monte Carlo sampling method, also called particle filter/smoother, with its most relevant variants. We also consider a new approach based on the Gaussian sum filter/smoother. Extensive numerical simulations—including a practical application—are presented in order to analyze the accuracy of the state estimation and the computational cost.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy