SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ahlberg Alexander) srt2:(2020-2022)"

Sökning: WFRF:(Ahlberg Alexander) > (2020-2022)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Klink, Jacob, et al. (författare)
  • Thermal fault detection by changes in electrical behaviour in lithium-ion cells
  • 2021
  • Ingår i: Journal of Power Sources. - : Elsevier. - 0378-7753 .- 1873-2755. ; 490
  • Tidskriftsartikel (refereegranskat)abstract
    • With this paper a method to detect faults of lithium-ion cells during operation is first presented and later validated by experiment. Since every cell fault will increase the cell temperature towards its process until thermal runaway the method uses the temperature-dependent change of the cell impedance as fault feature. Using a 46 Ah pouch cell the model was parameterised by electrochemical impedance spectroscopy and then validated during dynamic load. For this purpose the Worldwide harmonised Light vehicles Test Procedure (WLTP) was chosen. The presence of a fault was simulated by heating the cell once uniformly and once locally and the progression of the chosen fault feature analysed. For both test cases the method proposed was able to detect the present heat source before the thermal runaway was triggered and venting or voltage drop were observed.
  •  
2.
  • Robinson, James B., et al. (författare)
  • Identifying Defects in Li-Ion Cells Using Ultrasound Acoustic Measurements
  • 2020
  • Ingår i: Journal of the Electrochemical Society. - : The Electrochemical Society. - 0013-4651 .- 1945-7111. ; 167:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of the state-of-health (SoH) of Li-ion cells is a vital tool to protect operating battery packs against accelerated degradation and failure. This is becoming increasingly important as the energy and power densities demanded by batteries and the economic costs of packs increase. Here, ultrasonic time-of-flight analysis is performed to demonstrate the technique as a tool for the identification of a range of defects and SoH in Li-ion cells. Analysis of large, purpose-built defects across multiple length scales is performed in pouch cells. The technique is then demonstrated to detect a microscale defect in a commercial cell, which is validated by examining the acoustic transmission signal through the cell. The location and scale of the defects are confirmed using X-ray computed tomography, which also provides information pertaining to the layered structure of the cells. The demonstration of this technique as a methodology for obtaining direct, non-destructive, depth-resolved measurements of the condition of electrode layers highlights the potential application of acoustic methods in real-time diagnostics for SoH monitoring and manufacturing processes.
  •  
3.
  • Schmitz, Alexander, et al. (författare)
  • Longitudinal minimal residual disease assessment in multiple myeloma patients in complete remission : results from the NMSG flow-MRD substudy within the EMN02/HO95 MM trial
  • 2022
  • Ingår i: BMC Cancer. - : BMC. - 1471-2407 .- 1471-2407. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Multiple myeloma remains an incurable disease with multiple relapses due to residual myeloma cells in the bone marrow of patients after therapy. Presence of small number of cancer cells in the body after cancer treatment, called minimal residual disease, has been shown to be prognostic for progression-free and overall survival. However, for multiple myeloma, it is unclear whether patients attaining minimal residual disease negativity may be candidates for treatment discontinuation. We investigated, if longitudinal flow cytometry-based monitoring of minimal residual disease (flow-MRD) may predict disease progression earlier and with higher sensitivity compared to biochemical assessments. Methods: Patients from the Nordic countries with newly diagnosed multiple myeloma enrolled in the European-Myeloma-Network-02/Hovon-95 (EMN02/HO95) trial and undergoing bone marrow aspiration confirmation of complete response, were eligible for this Nordic Myeloma Study Group (NMSG) substudy. Longitdudinal flow-MRD assessment of bone marrow samples was performed to identify and enumerate residual malignant plasma cells until observed clinical progression. Results: Minimal residual disease dynamics were compared to biochemically assessed changes in serum free light chain and M-component. Among 20 patients, reaching complete response or stringent complete response during the observation period, and with >= 3 sequential flow-MRD assessments analysed over time, increasing levels of minimal residual disease in the bone marrow were observed in six cases, preceding biochemically assessed disease and clinical progression by 5.5 months and 12.6 months (mean values), respectively. Mean malignant plasma cells doubling time for the six patients was 1.8 months (95% CI, 1.4-2.3 months). Minimal malignant plasma cells detection limit was 4 x 10-5. Conclusions: Flow-MRD is a sensitive method for longitudinal monitoring of minimal residual disease dynamics in multiple myeloma patients in complete response. Increasing minimal residual disease levels precedes biochemically assessed changes and is an early indicator of subsequent clinical progression.
  •  
4.
  • Young, William J., et al. (författare)
  • Genetic analyses of the electrocardiographic QT interval and its components identify additional loci and pathways
  • 2022
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • The QT interval is a heritable electrocardiographic measure associated with arrhythmia risk when prolonged. Here, the authors used a series of genetic analyses to identify genetic loci, pathways, therapeutic targets, and relationships with cardiovascular disease. The QT interval is an electrocardiographic measure representing the sum of ventricular depolarization and repolarization, estimated by QRS duration and JT interval, respectively. QT interval abnormalities are associated with potentially fatal ventricular arrhythmia. Using genome-wide multi-ancestry analyses (>250,000 individuals) we identify 177, 156 and 121 independent loci for QT, JT and QRS, respectively, including a male-specific X-chromosome locus. Using gene-based rare-variant methods, we identify associations with Mendelian disease genes. Enrichments are observed in established pathways for QT and JT, and previously unreported genes indicated in insulin-receptor signalling and cardiac energy metabolism. In contrast for QRS, connective tissue components and processes for cell growth and extracellular matrix interactions are significantly enriched. We demonstrate polygenic risk score associations with atrial fibrillation, conduction disease and sudden cardiac death. Prioritization of druggable genes highlight potential therapeutic targets for arrhythmia. Together, these results substantially advance our understanding of the genetic architecture of ventricular depolarization and repolarization.
  •  
5.
  • Zwickl, Craig M., et al. (författare)
  • Principles and procedures for assessment of acute toxicity incorporating in silico methods
  • 2022
  • Ingår i: COMPUTATIONAL TOXICOLOGY. - : Elsevier. - 2468-1113. ; 24
  • Tidskriftsartikel (refereegranskat)abstract
    • Acute toxicity in silico models are being used to support an increasing number of application areas including (1) product research and development, (2) product approval and registration as well as (3) the transport, storage and handling of chemicals. The adoption of such models is being hindered, in part, because of a lack of guidance describing how to perform and document an in silico analysis. To address this issue, a framework for an acute toxicity hazard assessment is proposed. This framework combines results from different sources including in silico methods and in vitro or in vivo experiments. In silico methods that can assist the prediction of in vivo outcomes (i.e., LD50) are analyzed concluding that predictions obtained using in silico approaches are now well-suited for reliably supporting assessment of LD50- based acute toxicity for the purpose of the Globally Harmonized System (GHS) classification. A general overview is provided of the endpoints from in vitro studies commonly evaluated for predicting acute toxicity (e.g., cytotoxicity/cytolethality as well as assays targeting specific mechanisms). The increased understanding of pathways and key triggering mechanisms underlying toxicity and the increased availability of in vitro data allow for a shift away from assessments solely based on endpoints such as LD50, to mechanism-based endpoints that can be accurately assessed in vitro or by using in silico prediction models. This paper also highlights the importance of an expert review of all available information using weight-of-evidence considerations and illustrates, using a series of diverse practical use cases, how in silico approaches support the assessment of acute toxicity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy