SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ahlgren Fredrik 1980 ) srt2:(2016)"

Sökning: WFRF:(Ahlgren Fredrik 1980 ) > (2016)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlgren, Fredrik, 1980- (författare)
  • Waste heat recovery in a cruise vessel
  • 2016
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In three studies of a cruise ship the author has investigated waste heat recovery (WHR)from exhaust gases using an organic Rankine cycle (ORC), and also mapped the energyand exergy flows within the ship. Data were collected from the ship’s machinerysystem for a total extent of one year, and this data were used for simulations andenergy calculations. An off-design analysis was made and an ORC was simulated andoptimised with regards to the ship’s operating conditions. The ORC working fluid wasoptimised in terms for maximum electrical production in the off-design condition. Theoff-design analysis showed that the ship speed and power consumption was far fromits original design. The results indicate that there is a potential for significant savingsby using an organic Rankine cycle for waste heat recovery. The energy and exergyanalysis gave a better understanding of the energy flows and showed that the singlelargest exergy destruction occurs in the ship’s diesel engines.
  •  
2.
  • Ahlgren, Fredrik, 1980-, et al. (författare)
  • Waste Heat Recovery in a Cruise Vessel in the Baltic Sea by Using an Organic Rankine Cycle : A Case Study
  • 2016
  • Ingår i: Journal of engineering for gas turbines and power. - : ASME Press. - 0742-4795 .- 1528-8919. ; 138:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Maritime transportation is a significant contributor to SOx,NOx, and particle matter (PM) emissions, and to a lesser extent, of CO2. Recently, new regulations are being enforced in special geographical areas to limit the amount of emissions from the ships. This fact, together with the high fuel prices, is driving the marine industry toward the improvement of the energy efficiency of ships. Although more sophisticated and complex engine designs can improve significantly of the energy systems on ships, waste heat recovery arises as the most effective technique for the reduction of the energy consump- tion. In this sense, it is estimated that around 50% of the total energy from the fuel con- sumed in a ship is wasted and rejected through liquid and gas streams. The primary heat sources for waste heat recovery are the engine exhaust and coolant. In this work, we present a study on the integration of an organic Rankine cycle (ORC) in an existing ship, for the recovery of the main and auxiliary engines (AE) exhaust heat. Experimental data from the engines on the cruise ship M/S Birka Stockholm were logged during a port-to- port cruise from Stockholm to Mariehamn, over a period of 4 weeks. The ship has four main engines (ME) W€artsil€ a 5850kW for propulsion, and four AE 2760kW which areused for electrical generation. Six engine load conditions were identified depending on the ship’s speed. The speed range from 12 to 14 kn was considered as the design condi- tion for the ORC, as it was present during more than 34% of the time. In this study, the average values of the engines exhaust temperatures and mass flow rates, for each load case, were used as inputs for a model of an ORC. The main parameters of the ORC, including working fluid and turbine configuration, were optimized based on the criteria of maximum net power output and compactness of the installation components. Results from the study showed that an ORC with internal regeneration using benzene as working fluid would yield the greatest average net power output over the operating time. For this situation, the power production of the ORC would represent about 22% of the total elec- tricity consumption on board. These data confirmed the ORC as a feasible and promisingtechnology for the reduction of fuel consumption and CO2 emissions of existing ships.
  •  
3.
  • Baldi, Francesco, 1986, et al. (författare)
  • Optimal load allocation of complex ship power plants
  • 2016
  • Ingår i: Energy Conversion and Management. - : Elsevier BV. - 0196-8904 .- 1879-2227. ; 124, s. 344-356
  • Tidskriftsartikel (refereegranskat)abstract
    • In a world with increased pressure on reducing fuel consumption and carbon dioxide emissions, thecruise industry is growing in size and impact. In this context, further effort is required for improvingthe energy efficiency of cruise ship energy systems.In this paper, we propose a generic method for modelling the power plant of an isolated system withmechanical, electric and thermal power demands and for the optimal load allocation of the different componentsthat are able to fulfil the demand.The optimisation problem is presented in the form of a mixed integer linear programming (MINLP)problem, where the number of engines and/or boilers running is represented by the integer variables,while their respective load is represented by the non-integer variables. The individual components aremodelled using a combination of first-principle models and polynomial regressions, thus making thesystem nonlinear.The proposed method is applied to the load-allocation problem of a cruise ship sailing in the Baltic Sea,and used to compare the existing power plant with a hybrid propulsion plant. The results show thebenefits brought by using the proposing method, which allow estimating the performance of the hybridsystem (for which the load allocation is a non-trivial problem) while also including the contribution ofthe heat demand. This allows showing that, based on a reference round voyage, up to 3% savings couldbe achieved by installing the proposed system, compared to the existing one, and that a NPV of11 kUSD could be achieved already 5 years after the installation of the system.
  •  
4.
  • Baldi, Francesco, 1986, et al. (författare)
  • The application of process integration to the optimisation of cruise ship energy systems: A case study
  • 2016
  • Ingår i: ECOS 2016 - Proceedings of the 29th International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental Impact of Energy Systems. - 9789616980159
  • Konferensbidrag (refereegranskat)abstract
    • In recent years, the shipping industry has faced an increasing number of challenges in terms of fluctuating fuel prices, stricter environmental regulations, and concerns about global warming. In this situation, passenger volumes on cruise ships have increased from around 4 million to 13 million from 1990 to 2008 and keep growing today. A small cruise ship can emit about 85 tons of CO2 per day, and require around 27 tons of fuel per day. To keep up with market demand, while reducing their impact on the environment, cruise ships will need to improve their energy efficiency. Most previous research in marine technology relates to energy efficiency focused on propulsion, which for most ship types constitutes the largest energy demand. On cruise ships, however, auxiliary heat and electric power also have a significant importance. For this reason, we focus in this paper on the heat demand and its integration with available sources of waste heat on board. In this study, the principles of process integration are applied to the energy system of a cruise ship operating in the Baltic Sea. The heat sources (waste heat from the main and auxiliary engines in form of exhaust gas, cylinder cooling, charge air cooling, and lubricating oil cooling) and sinks (HVAC, hot water, fuel heating) are evaluated based on one year of operational data and used to generate four operating conditions that best represent ship operations. Applying the pinch analysis to the system revealed that the theoretical potential for heat integration on board could potentially allow the reduction of the external heat demand by between 35% and 85% depending on the investigated case. A technoeconomic optimisation allowed the identification of the most economically viable heat exchanger network designs: two in the “retrofit” scenario and one in the “design” scenario, with a reduction of 13-33%, 15-27% and 46-56% of the external heat demand, respectively. Given the high amount of heat being available after the process integration, we also analysed the potential for the installation of a steam turbine for the recovery of the energy available in the exhaust gas, which resulted in up to 900 kW of power being available for on board electric power demand.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy