SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ahmad Tariq) srt2:(2020-2024)"

Sökning: WFRF:(Ahmad Tariq) > (2020-2024)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ercan, Ayse Bahar, et al. (författare)
  • Clinical and biological landscape of constitutional mismatch-repair deficiency syndrome: an International Replication Repair Deficiency Consortium cohort study.
  • 2024
  • Ingår i: The Lancet. Oncology. - 1474-5488. ; 25:5, s. 668-682
  • Tidskriftsartikel (refereegranskat)abstract
    • Constitutional mismatch repair deficiency (CMMRD) syndrome is a rare and aggressive cancer predisposition syndrome. Because a scarcity of data on this condition contributes to management challenges and poor outcomes, we aimed to describe the clinical spectrum, cancer biology, and impact of genetics on patient survival in CMMRD.In this cohort study, we collected cross-sectional and longitudinal data on all patients with CMMRD, with no age limits, registered with the International Replication Repair Deficiency Consortium (IRRDC) across more than 50 countries. Clinical data were extracted from the IRRDC database, medical records, and physician-completed case record forms. The primary objective was to describe the clinical features, cancer spectrum, and biology of the condition. Secondary objectives included estimations of cancer incidence and of the impact of the specific mismatch-repair gene and genotype on cancer onset and survival, including after cancer surveillance and immunotherapy interventions.We analysed data from 201 patients (103 males, 98 females) enrolled between June 5, 2007 and Sept 9, 2022. Median age at diagnosis of CMMRD or a related cancer was 8·9 years (IQR 5·9-12·6), and median follow-up from diagnosis was 7·2 years (3·6-14·8). Endogamy among minorities and closed communities contributed to high homozygosity within countries with low consanguinity. Frequent dermatological manifestations (117 [93%] of 126 patients with complete data) led to a clinical overlap with neurofibromatosis type 1 (35 [28%] of 126). 339 cancers were reported in 194 (97%) of 201 patients. The cumulative cancer incidence by age 18 years was 90% (95% CI 80-99). Median time between cancer diagnoses for patients with more than one cancer was 1·9 years (IQR 0·8-3·9). Neoplasms developed in 15 organs and included early-onset adult cancers. CNS tumours were the most frequent (173 [51%] cancers), followed by gastrointestinal (75 [22%]), haematological (61 [18%]), and other cancer types (30 [9%]). Patients with CNS tumours had the poorest overall survival rates (39% [95% CI 30-52] at 10 years from diagnosis; log-rank p<0·0001 across four cancer types), followed by those with haematological cancers (67% [55-82]), gastrointestinal cancers (89% [81-97]), and other solid tumours (96% [88-100]). All cancers showed high mutation and microsatellite indel burdens, and pathognomonic mutational signatures. MLH1 or MSH2 variants caused earlier cancer onset than PMS2 or MSH6 variants, and inferior survival (overall survival at age 15 years 63% [95% CI 55-73] for PMS2, 49% [35-68] for MSH6, 19% [6-66] for MLH1, and 0% for MSH2; p<0·0001). Frameshift or truncating variants within the same gene caused earlier cancers and inferior outcomes compared with missense variants (p<0·0001). The greater deleterious effects of MLH1 and MSH2 variants as compared with PMS2 and MSH6 variants persisted despite overall improvements in survival after surveillance or immune checkpoint inhibitor interventions.The very high cancer burden and unique genomic landscape of CMMRD highlight the benefit of comprehensive assays in timely diagnosis and precision approaches toward surveillance and immunotherapy. These data will guide the clinical management of children and patients who survive into adulthood with CMMRD.The Canadian Institutes for Health Research, Stand Up to Cancer, Children's Oncology Group National Cancer Institute Community Oncology Research Program, Canadian Cancer Society, Brain Canada, The V Foundation for Cancer Research, BioCanRx, Harry and Agnieszka Hall, Meagan's Walk, BRAINchild Canada, The LivWise Foundation, St Baldrick Foundation, Hold'em for Life, and Garron Family Cancer Center.
  •  
3.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
4.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
5.
  • Afroz, Laila, et al. (författare)
  • Nanocomposite Catalyst (1 – x)NiO-xCuO/yGDC for Biogas Fueled Solid Oxide Fuel Cells
  • 2023
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 6:21, s. 10918-10928
  • Tidskriftsartikel (refereegranskat)abstract
    • The composites of Ni–Cu oxides with gadolinium doped ceria (GDC) are emerging as highly proficient anode catalysts, owing to their remarkable performance for solid oxide fuel cells operated with biogas. In this context, the nanocomposite catalysts (1 – x)NiO-xCuO/yGDC (x = 0.2–0.8; y = 1,1.3) are synthesized using a solid-state reaction route. The cubic and monoclinic structures are observed for NiO and CuO phases, respectively, while CeO2 showed cubic fluorite structure. The scanning electron microscopic images revealed a rise in the particle size with an increase in the copper and GDC concentration. The optical band gap values are calculated in the range 2.82–2.33 eV from UV–visible analysis. The Raman spectra confirmed the presence of vibration modes of CeO2 and NiO. The electrical conductivity of the nanocomposite anodes is increased as the concentration of copper and GDC increased and reached at 9.48 S cm–1 for 0.2NiO-0.8CuO/1.3GDC composition at 650 °C. The electrochemical performance of (1 – x)NiO-xCuO/yGDC (x = 0.2–0.8; y = 1,1.3)-based fuel cells is investigated with biogas fuel at 650 °C. Among all of the as-synthesized anodes, the fuel cell with composition 0.2NiO-0.8CuO/1.3GDC showed the best performance, such as an open circuit voltage of 0.84 V and peak power density of 72 mW cm–2. However, from these findings, it can be inferred that among all other compositions, the 0.2NiO-0.8CuO/1.3GDC anode is a superior combination for the high electrochemical performance of solid oxide fuel cells fueled with biogas.
  •  
6.
  • Ahmed Waqas, Hafiz, et al. (författare)
  • Performance Prediction of Hybrid Bamboo-Reinforced Concrete Beams Using Gene Expression Programming for Sustainable Construction
  • 2023
  • Ingår i: Materials. - : MDPI. - 1996-1944 .- 1996-1944. ; 16:20
  • Tidskriftsartikel (refereegranskat)abstract
    • The building and construction industry’s demand for steel reinforcement bars has increased with the rapid growth and development in the world. However, steel production contributes to harmful waste and emissions that cause environmental pollution and climate change-related problems. In light of sustainable construction practices, bamboo, a readily accessible and ecofriendly building material, is suggested as a viable replacement for steel rebars. Its cost-effectiveness, environmental sustainability, and considerable tensile strength make it a promising option. In this research, hybrid beams underwent analysis through the use of thoroughly validated finite element models (FEMs), wherein the replacement of steel rebars with bamboo was explored as an alternative reinforcement material. The standard-size beams were subjected to three-point loading using FEMs to study parameters such as the load–deflection response, energy absorption, maximum capacity, and failure patterns. Then, gene expression programming was integrated to aid in developing a more straightforward equation for predicting the flexural strength of bamboo-reinforced concrete beams. The results of this study support the conclusion that the replacement of a portion of flexural steel with bamboo in reinforced concrete beams does not have a detrimental impact on the overall load-bearing capacity and energy absorption of the structure. Furthermore, it may offer a cost-effective and feasible alternative. 
  •  
7.
  • Arslan, Muhammad, et al. (författare)
  • Impact of Varying Load Conditions and Cooling Energy Comparison of a Double-Inlet Pulse Tube Refrigerator
  • 2020
  • Ingår i: Processes. - : MDPI. - 2227-9717. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Modeling and optimization of a double-inlet pulse tube refrigerator (DIPTR) is very difficult due to its geometry and nature. The objective of this paper was to optimize-DIPTR through experiments with the cold heat exchanger (CHX) along the comparison of cooling load with experimental data using different boundary conditions. To predict its performance, a detailed two-dimensional DIPTR model was developed. A double-drop pulse pipe cooler was used for solving continuity, dynamic and power calculations. External conditions for applicable boundaries include sinusoidal pressure from an end of the tube from a user-defined function and constant temperature or limitations of thermal flux within the outer walls of exchanger walls under colder conditions. The results of the system's cooling behavior were reported, along with the connection between the mass flow rates, heat distribution along pulse tube and cold-end pressure, the cooler load's wall temp profile and cooler loads with varied boundary conditions i.e. opening of 20% double-inlet and 40-60% orifice valves, respectively. Different loading conditions of 1 and 5W were applied on the CHX. At 150 K temperature of the cold-end heat exchanger, a maximum load of 3.7 W was achieved. The results also reveal a strong correlation between computational fluid dynamics modeling results and experimental results of the DIPTR.
  •  
8.
  • Asif, Muhammad, et al. (författare)
  • Comprehensive genomic analysis of Bacillus paralicheniformis strain BP9, pan-genomic and genetic basis of biocontrol mechanism
  • 2023
  • Ingår i: Computational and Structural Biotechnology Journal. - : Elsevier B.V.. - 2001-0370. ; 21, s. 4647-4662
  • Tidskriftsartikel (refereegranskat)abstract
    • Many Bacillus species are essential antibacterial agents, but their antibiosis potential still needs to be elucidated to its full extent. Here, we isolated a soil bacterium, BP9, which has significant antibiosis activity against fungal and bacterial pathogens. BP9 improved the growth of wheat seedlings via active colonization and demonstrated effective biofilm and swarming activity. BP9 sequenced genome contains 4282 genes with a mean G-C content of 45.94% of the whole genome. A single copy concatenated 802 core genes of 28 genomes, and their calculated average nucleotide identity (ANI) discriminated the strain BP9 from Bacillus licheniformis and classified it as Bacillus paralicheniformis. Furthermore, a comparative pan-genome analysis of 40 B. paralicheniformis strains suggested that the genetic repertoire of BP9 belongs to open-type genome species. A comparative analysis of a pan-genome dataset using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cluster of Orthologous Gene groups (COG) revealed the diversity of secondary metabolic pathways, where BP9 distinguishes itself by exhibiting a greater prevalence of loci associated with the metabolism and transportation of organic and inorganic substances, carbohydrate and amino acid for effective inhabitation in diverse environments. The primary secondary metabolites and their genes involved in synthesizing bacillibactin, fencing, bacitracin, and lantibiotics were identified as acquired through a recent Horizontal gene transfer (HGT) event, which contributes to a significant part of the strain`s antimicrobial potential. Finally, we report some genes essential for plant-host interaction identified in BP9, which reduce spore germination and virulence of multiple fungal and bacterial species. The effective colonization, diverse predicted metabolic pathways and secondary metabolites (antibiotics) suggest testing the suitability of strain BP9 as a potential bio-preparation in agricultural fields.
  •  
9.
  • Aziz, Maria, et al. (författare)
  • Efficient Removal of Lead and Chromium From Aqueous Media Using Selenium Based Nanocomposite Supported by Orange Peel
  • 2022
  • Ingår i: Frontiers in Environmental Science. - : Frontiers Media S.A.. - 2296-665X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • This study presents the synthesis of activated orange peel, derived from bio-waste (orange peel) and its doping with selenium nano-particles to enhance the adsorption capacity. The synthesized nanocomposite orange peel/Selenium (OP/Se) was applied as adsorbents for the removal of Lead (Pb) and Chromium (Cr) from synthetic waste water as an economical water cleaning technology. Orange peel/Selenium nanocomposite was characterized by X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and Scanning electron microscopy (SEM). Scanning electron microscopy results showed the porous structure of OP/Se nanocomposite and distinct peaks observed in XRD and FTIR spectra depicted the successful synthesis of nanocomposite. Batch experiments were conducted to figure out the effect of different parameters on adsorption of Pb and Cr by using Atomic Absorption Spectroscopy. The maximum adsorption capacity of 99.9% was achieved for both lead and chromium at acidic pH. While at temperature of 60°C the maximum adsorption of 98.3 and 95.9% was found for Pb and Cr respectively. Furthermore the experimental data was examined with Pseudo-first order, first-order and Pseudo-second order kinetic model, as well as Morris Intraparticle diffusion model where the pseudo second order was best fitted which indicated the chemisorption mechanism in adsorption process. The adsorption process followed the Langmuir isotherm model verified that OP/Se nanocomposite was found to be favorable for the process of adsorption. The adsorption thermodynamics indicate that adsorption of heavy metals ions is spontaneous (ΔG° < 0) and the adsorption increases with increase in temperature which means that reaction was endothermic in nature. This study revealed that the synthesized bio-activated nanocomposite was an efficient adsorbent material for the removal of heavy metals from waste water.
  •  
10.
  • Fatima, Iza, et al. (författare)
  • Individual and synergistic effects of different fertilizers and gibberellin on growth and morphology of chili seedlings
  • 2024
  • Ingår i: Acta Ecologica Sinica. - 1872-2032. ; 44:2, s. 275-281
  • Tidskriftsartikel (refereegranskat)abstract
    • Gibberellins (GA3), as well as the basic elements phosphorus (P), nitrogen (N), and potassium (K), are crucial to the growth of chili. This study investigates the effect of different fertilizers and plant growth regulator on the growth and morphology of chili seedlings. Soil application of NPK, urea, SOP, and DAP (2.5 g/L) was applied during sowing, and N in two splits at sowing and after twenty days of sowing while foliar application of GA3 (50 mg/L) was applied after fifteen days of germination. The result of five seedlings' traits plant height (PH), plant girth (PG), plant spread (PS), number of leaves (NOF), and root length (RL) demonstrated a significant difference among growth-related traits in chili seedlings owing to the use of fertilizers, GA3, and their combinations. An optimum level of K and P alone or in combination with GA3 had a significant effect on all traits. PH was particularly influenced by the combination of GA3 with K and P whereas other traits like PG, NOF, PS, and RL are greatly influenced by the application of NPK, urea, SOP, DAP, and their combination with GA3. The study results showed an increase in chili seedlings' growth and morphology in response to various fertilizers and GA3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy