SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ahmed Mobyen Uddin) srt2:(2010-2014)"

Sökning: WFRF:(Ahmed Mobyen Uddin) > (2010-2014)

  • Resultat 1-10 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmed, Mobyen Uddin (författare)
  • A case-based multi-modal clinical system for stress management
  • 2010
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A difficult issue in stress management is to use biomedical sensor signal in the diagnosis and treatment of stress. Clinicians often make their diagnosis and decision based on manual inspection of physiological signals such as, ECG, heart rate, finger temperature etc. However, the complexity associated with manual analysis and interpretation of the signals makes it difficult even for experienced clinicians. Today the diagnosis and decision is largely dependent on how experienced the clinician is interpreting the measurements.  A computer-aided decision support system for diagnosis and treatment of stress would enable a more objective and consistent diagnosis and decisions. A challenge in the field of medicine is the accuracy of the system, it is essential that the clinician is able to judge the accuracy of the suggested solutions. Case-based reasoning systems for medical applications are increasingly multi-purpose and multi-modal, using a variety of different methods and techniques to meet the challenges of the medical domain. This research work covers the development of an intelligent clinical decision support system for diagnosis, classification and treatment in stress management. The system uses a finger temperature sensor and the variation in the finger temperature is one of the key features in the system. Several artificial intelligence techniques have been investigated to enable a more reliable and efficient diagnosis and treatment of stress such as case-based reasoning, textual information retrieval, rule-based reasoning, and fuzzy logic. Functionalities and the performance of the system have been validated by implementing a research prototype based on close collaboration with an expert in stress. The case base of the implemented system has been initiated with 53 reference cases classified by an experienced clinician. A case study also shows that the system provides results close to a human expert. The experimental results suggest that such a system is valuable both for less experienced clinicians and for experts where the system may function as a second option.
  •  
2.
  • Ahmed, Mobyen Uddin, 1976-, et al. (författare)
  • A Case-Based Retrieval System for Post-Operative Pain Treatment
  • 2011
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents a clinical decision support system based on case-basedretrieval approach to assist physicians in post-operative pain treatment. Here,the cases are formulated by combining regular features and features using anumerical visual analogue scale (NVAS) through a questionnaire. Featureabstraction is done both in problem and outcome description of a case in order toreduce the number of attributes. The system retrieves most similar cases with theiroutcomes. The outcome of each case brings benefits for physicians since it presentsboth severity and fast recovery by the applied treatment in post-operative patients.Therefore, we have introduced a two-layer case structure i.e., solution is the firstlayer and outcome is the second layer that better suits this medical application. Inthe system, the solution presents the treatment and the outcome contains recoveryinformation of a patient, something physicians are interested in, especially the riskof side effects and complications.
  •  
3.
  • Ahmed, Mobyen Uddin, et al. (författare)
  • A Computer Aided System for Post-operative Pain Treatment Combining Knowledge Discovery and Case-Based Reasoning
  • 2012
  • Ingår i: Lecture Notes in Computer Science, vol. 7466. - Berlin, Heidelberg : Springer. - 9783642329852 ; , s. 3-16
  • Bokkapitel (refereegranskat)abstract
    • The quality improvement for individual postoperative-pain treatment is an important issue. This paper presents a computer aided system for physicians in their decision making tasks in post-operative pain treatment. Here, the system combines a Case-Based Reasoning (CBR) approach with knowledge discovery. Knowledge discovery is applied in terms of clustering in order to identify the unusual cases. We applied a two layered case structure for case solutions i.e. the treatment is in the first layer and outcome after treatment (i.e. recovery of the patient) is in the second layer. Moreover, a 2nd order retrieval approach is applied in the CBR retrieval step in order to retrieve the most similar cases. The system enables physicians to make more informed decisions since they are able to explore similar both regular and rare cases of post-operative patients. The two layered case structure is moving the focus from diagnosis to outcome i.e. the recovery of the patient, something a physician is especially interested in, including the risk of complications and side effects.
  •  
4.
  • Ahmed, Mobyen Uddin, 1976-, et al. (författare)
  • A Hybrid Case-Based System in Stress Diagnosis and Treatment
  • 2012
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Computer-aided decision support systems play anincreasingly important role in clinical diagnosis and treatment.However, they are difficult to build for domains where thedomain theory is weak and where different experts differ indiagnosis. Stress diagnosis and treatment is an example of such adomain. This paper explores several artificial intelligencemethods and techniques and in particular case-based reasoning,textual information retrieval, rule-based reasoning, and fuzzylogic to enable a more reliable diagnosis and treatment of stress.The proposed hybrid case-based approach has been validated byimplementing a prototype in close collaboration with leadingexperts in stress diagnosis. The obtained sensitivity, specificityand overall accuracy compared to an expert are 92%, 86% and88% respectively.
  •  
5.
  • Ahmed, Mobyen Uddin, et al. (författare)
  • A Multi-Module Case Based Biofeedback System for Stress Treatment
  • 2011
  • Ingår i: Artificial Intelligence in Medicine. - : Elsevier BV. - 0933-3657 .- 1873-2860. ; 51:2, s. 107-115
  • Tidskriftsartikel (refereegranskat)abstract
    • Biofeedback is today a recognized treatment method for a number of physical and psychological problems. Experienced clinicians often achieve good results in these areas and their success largely builds on many years of experience and often thousands of treated patients. Unfortunately many of the areas where biofeedback is used are very complex, e.g. diagnosis and treatment of stress. Less experienced clinicians may even have difficulties to initially classify the patient correctly. Often there are only a few experts available to assist less experienced clinicians. To reduce this problem we propose a computer assisted biofeedback system helping in classification, parameter setting and biofeedback training. By adopting a case based approach in a computer-based biofeedback system, decision support can be offered to less experienced clinicians and provide a second opinion to experts. We explore how such a system may be designed and validate the approach in the area of stress where the system assists in the classification, parameter setting and finally in the training. In a case study we show that the case based biofeedback system outperforms novice clinicians based on a case library of cases authorized by an expert.
  •  
6.
  • Ahmed, Mobyen Uddin, 1976- (författare)
  • A Multimodal Approach for Clinical Diagnosis and Treatment
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A computer-aided Clinical Decision Support System (CDSS) for diagnosis and treatment often plays a vital role and brings essential benefits for clinicians. Such a CDSS could function as an expert for a less experienced clinician or as a second option/opinion of an experienced clinician to their decision making task. Nevertheless, it has been a real challenge to design and develop such a functional system where accuracy of the system performance is an important issue. This research work focuses on development of intelligent CDSS based on a multimodal approach for diagnosis, classification and treatment in medical domains i.e. stress and post-operative pain management domains. Several Artificial Intelligence (AI) techniques such as Case-Based Reasoning (CBR), textual Information Retrieval (IR), Rule-Based Reasoning (RBR), Fuzzy Logic and clustering approaches have been investigated in this thesis work. Patient’s data i.e. their stress and pain related information are collected from complex data sources for instance, finger temperature measurements through sensor signals, pain measurements using a Numerical Visual Analogue Scale (NVAS), patient’s information from text and multiple choice questionnaires. The proposed approach considers multimedia data management to be able to use them in CDSSs for both the domains. The functionalities and performance of the systems have been evaluated based on close collaboration with experts and clinicians of the domains. In stress management, 68 measurements from 46 subjects and 1572 patients’ cases out of ≈4000 in post-operative pain have been used to design, develop and validate the systems. In the stress management domain, besides the 68 measurement cases, three trainees and one senior clinician also have been involved in order to conduct the experimental work. The result from the evaluation shows that the system reaches a level of performance close to the expert and better than the senior and trainee clinicians. Thus, the proposed CDSS could be used as an expert for a less experienced clinician (i.e. trainee) or as a second option/opinion for an experienced clinician (i.e. senior) to their decision making process in stress management. In post-operative pain treatment, the CDSS retrieves and presents most similar cases (e.g. both rare and regular) with their outcomes to assist physicians. Moreover, an automatic approach is presented in order to identify rare cases and 18% of cases from the whole cases library i.e. 276 out of 1572 are identified as rare cases by the approach. Again, among the rare cases (i.e. 276), around 57.25% of the cases are classified as ‘unusually bad’ i.e. the average pain outcome value is greater or equal to 5 on the NVAS scale 0 to 10. Identification of rear cases is an important part of the PAIN OUT project and can be used to improve the quality of individual pain treatment.
  •  
7.
  • Ahmed, Mobyen Uddin, 1976-, et al. (författare)
  • A case-based patient identification system using pulseoximeter and a personalized health profile
  • 2012
  • Ingår i: Proceedings of the ICCBR 2012 Workshops. - Lyon, France. ; , s. 117-128
  • Konferensbidrag (refereegranskat)abstract
    • This paper proposes a case-based system framework in order to identify patient using their health parameters taken with physiological sensors. It combines a personalized health profiling protocol with a Case-Based Reasoning (CBR) approach. The personalized health profiling helps to determine a number of individual parameters which are important inputs for a clinician to make the final diagnosis and treatment plan. The proposed system uses a pulse oximeter that measures pulse rate and blood oxygen saturation. The measurements are taken through an android application in a smart phone which is connected with the pulseoximeter and bluetooth communication. The CBR approach helps clinicians to make a diagnosis, classification and treatment plan by retrieving the most similar previous case. The case may also be used to follow the treatment progress. Here, the cases are formulated with person’s contextual information and extracted features from sensor signal measurements. The features are extracted considering three domain analysis:1) time domain features using statistical measurement, 2) frequency domain features applying Fast Fourier Transform (FFT), and 3) time-frequency domain features applying Discrete Wavelet Transform (DWT). The initial result is acceptable that shows the advancement of the system while combining the personalized health profiling together with CBR.
  •  
8.
  • Ahmed, Mobyen Uddin, et al. (författare)
  • An Overview of three Medical Applications Using Hybrid Case-Based Reasoning
  • 2012
  • Konferensbidrag (refereegranskat)abstract
    • Today more and more patient journals are stored electronically but they are rarely used for more than statistical purpose. In this paper we present an approach where clinical patient journals are used for improved clinical decision making on an individual level. The underlying assumption is that medical staff benefit from comparing a specific patient with similar patient. By comparing symptoms, diagnosis, medication and outcome in an individual level they are able to make more informed decisions at the point of care. This paper presents some parts of our more than ten years research efforts in the area and some of the projects and their underlying hybrid approaches. As a foundation for all our projects we use case-based reasoning (CBR) research in combination with techniques from artificial intelligence, data mining, statistics and search techniques. Three systems are presented in two medical domains 1) decision support for stress diagnosis 2) decision support for stress treatment and 3) decision support for post-operative pain treatment and discuss results and lessons learned.
  •  
9.
  • Ahmed, Mobyen Uddin, et al. (författare)
  • Bibliometric Profiling of a Group: A Discussion on Different Indicators
  • 2011
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Now-a-days in some advanced countries bibliometric profiling plays a vital role when making decision on promotion, fund allocation and award prizes. Accurate identification of this is important since it is becoming important to assess scientific output for a researcher or a group of researcher. This paper presents and discusses several most common indicators of bibliometric profiling together with h- and g-indexes. A case study has been conducted on 101 scientific articles with three most well known search engines. The study results using several indicators are presented in this report.
  •  
10.
  • Ahmed, Mobyen Uddin, et al. (författare)
  • Case-Based Reasoning for Medical and Industrial Decision Support Systems
  • 2010
  • Ingår i: Successful Case-based Reasoning Applications. - Berlin, Heidelberg : Springer. - 9783642140778 ; , s. 7-52
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • The amount of medical and industrial experience and knowledge is rapidly growing and it is almost impossible to be up to date with everything. The demand of decision support system (DSS) is especially important in domains where experience and knowledge grow rapidly. However, traditional approaches to DSS are not always easy to adapt to a flow of new experience and knowledge and may also show a limitation in areas with a weak domain theory. This chapter explores the functionalities of Case-Based Reasoning (CBR) to facilitate experience reuse both in clinical and in industrial decision making tasks. Examples from the field of stress medicine and condition monitoring in industrial robots are presented here to demonstrate that the same approach assists both for clinical applications as well as for decision support for engineers. In the both domains, DSS deals with sensor signal data and integrate other artificial intelligence techniques into the CBR system to enhance the performance in a number of different aspects. Textual information retrieval, Rule-based Reasoning (RBR), and fuzzy logic are combined together with CBR to offer decision support to clinicians for a more reliable and efficient management of stress. Agent technology and wavelet transformations are applied with CBR to diagnose audible faults on industrial robots and to package such a system. The performance of the CBR systems have been validated and have shown to be useful in solving such problems in both of these domains.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 36

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy