SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Akhtar Sultan) srt2:(2020-2023)"

Sökning: WFRF:(Akhtar Sultan) > (2020-2023)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akhtar, Evana, et al. (författare)
  • A longitudinal study of rural Bangladeshi children with long-term arsenic and cadmium exposures and biomarkers of cardiometabolic diseases
  • 2021
  • Ingår i: Environmental Pollution. - : Elsevier. - 0269-7491 .- 1873-6424. ; 271
  • Tidskriftsartikel (refereegranskat)abstract
    • There is growing interest in understanding the contribution of environmental toxicant exposure in early life to development of cardiometabolic diseases (CMD) in adulthood. We aimed to assess associations of early life exposure to arsenic and cadmium with biomarkers of CMD in children in rural Bangladesh. From a longitudinal mother-child cohort in Matlab, Bangladesh, we followed up 540 pairs. Exposure to arsenic (U–As) and cadmium (U–Cd) was assessed by concentrations in urine from mothers at gestational week 8 (GW8) and children at ages 4.5 and 9 years. Blood pressure and anthropometric indices were measured at 4.5 and 9 years. Metabolic markers (lipids, glucose, hemoglobin A1c, adipokines, estimated glomerular filtration rate (eGFR) were determined in plasma/blood of 9 years old children. In linear regression models, adjusted for child sex, age, height-for-age z score (HAZ), BMI-for-age z score (BAZ), socioeconomic status (SES) and maternal education, each doubling of maternal and early childhood U–Cd was associated with 0.73 and 0.82 mmHg increase in systolic blood pressure (SBP) respectively. Both early and concurrent childhood U–Cd was associated with diastolic (D)BP (β = 0.80 at 4.5 years; β = 0.75 at 9 years). Each doubling of U–Cd at 9 years was associated with decrements of 4.98 mg/dL of total cholesterol (TC), 1.75 mg/dL high-density lipoprotein (HDL), 3.85 mg/dL low-density lipoprotein (LDL), 0.43 mg/dL glucose and 4.29 units eGFR. Each doubling of maternal U–Cd was associated with a decrement of 1.23 mg/dL HDL. Both maternal and childhood U–As were associated with decrement in TC and HDL. Multiple comparisons were checked with family-wise error rate Bonferroni-type-approach. The negative associations of arsenic and cadmium with biomarkers of CMD in preadolescent children indicated influence of both metal(loid)s on fat and carbohydrate metabolism, while cadmium additionally influenced kidney function and BP. Thus, fewer outcomes were associated with U–As compared to U–Cd at preadolescence.
  •  
2.
  • Munir, M. Adeel, et al. (författare)
  • Blockchain Adoption for Sustainable Supply Chain Management : Economic, Environmental, and Social Perspectives
  • 2022
  • Ingår i: Frontiers in Energy Research. - : Frontiers Media S.A.. - 2296-598X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to the rapid increase in environmental degradation and depletion of natural resources, the focus of researchers is shifted from economic to socio-environmental problems. Blockchain is a disruptive technology that has the potential to restructure the entire supply chain for sustainable practices. Blockchain is a distributed ledger that provides a digital database for recording all the transactions of the supply chain. The main purpose of this research is to explore the literature relevant to blockchain for sustainable supply chain management. The focus of this review is on the sustainability of the blockchain-based supply chain concerning environmental conservation, social equality, and governance effectiveness. Using a systematic literature review, a total of 136 articles were evaluated and categorized according to the triple bottom-line aspects of sustainability. Challenges and barriers during blockchain adoption in different industrial sectors such as aviation, shipping, agriculture and food, manufacturing, automotive, pharmaceutical, and textile industries were critically examined. This study has not only explored the economic, environmental, and social impacts of blockchain but also highlighted the emerging trends in a circular supply chain with current developments of advanced technologies along with their critical success factors. Furthermore, research areas and gaps in the existing research are discussed, and future research directions are suggested. The findings of this study show that blockchain has the potential to revolutionize the entire supply chain from a sustainability perspective. Blockchain will not only improve the economic sustainability of the supply chain through effective traceability, enhanced visibility through information sharing, transparency in processes, and decentralization of the entire structure but also will help in achieving environmental and social sustainability through resource efficiency, accountability, smart contracts, trust development, and fraud prevention. The study will be helpful for managers and practitioners to understand the procedure of blockchain adoption and to increase the probability of its successful implementation to develop a sustainable supply chain network.
  •  
3.
  • Tombuloglu, Huseyin, et al. (författare)
  • The size of iron oxide nanoparticles determines their translocation and effects on iron and mineral nutrition of pumpkin (Cucurbita maxima L.)
  • 2022
  • Ingår i: Journal of Magnetism and Magnetic Materials. - : Elsevier BV. - 0304-8853 .- 1873-4766. ; 564
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability of nanoparticles (NPs) to migrate in the plant body is an important issue to ensure that the NPs reach the desired tissue and to be able to select the most efficient NPs for agricultural applications. In this study, the size impact of four different iron oxide NPs (8-10, 18-20, 20-40, and 30-50 nm referred as NP10, NP20, NP30, and NP40, respectively) on their translocation in pumpkin was elucidated. To assess the root-to-shoot trans -location, phloem sap was examined under transmission electron microscope (TEM). In addition, vibrating sample magnetometer (VSM) and inductively coupled plasma optical emission spectrophotometry (ICP-OES) analyses of stem and leaf tissues were performed to confirm size-dependent translocation. TEM and VSM analyses verified root-to-stem translocation of all tested NPs. The NPs treatment significantly altered the abundances of Mn, Cu, K, P, Al, Mg, and Na in tissues. The iron (Fe) content was abundant in plants treated with NP30 and NP20, and the lowest in plants treated with NP10 and NP40. Together with, only NP30 was found to be significantly trans -located to the leaves, where it was 393 mg/kg in DW, about 2.3 times that of control. These findings pointed out the size-dependent translocation of NPs. It seems that biological barriers in the vascular bundle appear to restrict the migration, especially for NPs with an average size of 40 nm and above in pumpkins. These findings are important for selecting the most suitable size of iron oxide NPs for use in agricultural practices.
  •  
4.
  • Ullah, Zahid, et al. (författare)
  • Natural fibers and zinc hydroxystannate 3D microspheres based composite paper sheets for modern bendable energy storage application
  • 2023
  • Ingår i: Journal of Applied Polymer Science. - : John Wiley & Sons. - 0021-8995 .- 1097-4628. ; 140:1
  • Tidskriftsartikel (refereegranskat)abstract
    • For modern high-tech flexible energy storage devices, it becomes important to synthesize micro-/nanostructures as per the required shape and morphology with superior physical and electro-active characteristics. This work shares the fabrication and characterization of ZnSn(OH)(6) (Zinc hydroxystannate [ZHS]) prepared by facile microwave-assisted technique and furthermore converted into flexible sheets by employing lignocelluloses (LC) known as natural fibers, collected from Carica papaya leaf petiole as a substrate to provide the flexible matrix. X-ray diffraction measurements confirm the successful crystalline structure of ZHS. Scanning electron microscopy and transmission electron microscopy showed the solid spherical structure of ZHS microspheres. Fourier transform infrared spectrometry and Raman spectroscopy confirmed the composite formation of ZHS and LC-based composite sheets (ZHS/LC sheets). Electrochemical measurements that is, cyclic voltammetry (CV), Galvanostatic charge/discharge, and electrochemical impedance (EIS) spectroscopy revealed the electroactive behavior of ZHS/LC paper sheets as working electrode for energy storage applications. CV measurements revealed the specific capacitance of 100 F/g and EIS measurements confirmed the decrease in the resistance of LC fiber after the growth of ZHS microspheres. Presented flexible ZHS based paper sheets will be highly feasible for the modern bendable/flexible/disposable energy storage applications.
  •  
5.
  • Bravo, L, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
6.
  • Tabiri, S, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy