SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alberti S) srt2:(2010-2014)"

Sökning: WFRF:(Alberti S) > (2010-2014)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rees, R. M., et al. (författare)
  • Nitrous oxide emissions from European agriculture - an analysis of variability and drivers of emissions from field experiments
  • 2013
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 10:4, s. 2671-2682
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitrous oxide emissions from a network of agricultural experiments in Europe and Zimbabwe were used to explore the relative importance of site and management controls of emissions. At each site, a selection of management interventions were compared within replicated experimental designs in plot based experiments. Arable experiments were conducted at Beano in Italy, El Encin in Spain, Foulum in Denmark, Logården in Sweden, Maulde in Belgium, Paulinenaue in Germany, Harare in Zimbabwe and Tulloch in the UK. Grassland experiments were conducted at Crichton, Nafferton and Peaknaze in the UK, Gödöllö in Hungary, Rzecin in Poland, Zarnekow in Germany and Theix in France. Nitrous oxide emissions were measured at each site over a period of at least two years using static chambers. Emissions varied widely between sites and as a result of manipulation treatments. Average site emissions (throughout the study period) varied between 0.04 and 21.21 kg N2O-N ha−1 yr−1, with the largest fluxes and variability associated with the grassland sites. Total nitrogen addition was found to be the single most important determinant of emissions, accounting for 15% of the variance (using linear regression) in the data from the arable sites (p < 0.0001), and 77% in the grassland sites. The annual emissions from arable sites were significantly greater than those that would be predicted by IPCC default emission factors. Variability in N2O within sites that occurred as a result of manipulation treatments was greater than that resulting from site to site and year to year variation, highlighting the importance of management interventions in contributing to greenhouse gas mitigation.
  •  
2.
  • Gundersen, P., et al. (författare)
  • The response of methane and nitrous oxide fluxes to forest change in Europe
  • 2012
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 9:10, s. 3999-4012
  • Tidskriftsartikel (refereegranskat)abstract
    • Forests in Europe are changing due to interactions between climate change, nitrogen (N) deposition and new forest management practices. The concurrent impact on the forest greenhouse gas (GHG) balance is at present difficult to predict due to a lack of knowledge on controlling factors of GHG fluxes and response to changes in these factors. To improve the mechanistic understanding of the ongoing changes, we studied the response of soil–atmosphere exchange of nitrous oxide (N2O) and methane (CH4) at twelve experimental or natural gradient forest sites, representing anticipated future forest change. The experimental manipulations, one or more per site, included N addition (4 sites), changes of climate (temperature, 1 site; precipitation, 2 sites), soil hydrology (3 sites), harvest intensity (1 site), wood ash fertilisation (1 site), pH gradient in organic soil (1 site) and afforestation of cropland (1 site). On average, N2O emissions increased by 0.06 ± 0.03 (range 0–0.3) g N2O-N m−2 yr−1 across all treatments on mineral soils, but the increase was up to 10 times higher in an acidic organic soil. Soil moisture together with mineral soil C / N ratio and pH were found to significantly influence N2O emissions across all treatments. Emissions were increased by elevated N deposition, especially in interaction with increased soil moisture. High pH reduced the formation of N2O, even under otherwise favourable soil conditions. Oxidation (uptake) of CH4 was on average reduced from 0.16 ± 0.02 to 0.04 ± 0.05 g CH4-C m−2 yr−1 by the investigated treatments. The CH4 exchange was significantly influenced by soil moisture and soil C / N ratio across all treatments, and CH4 emissions occurred only in wet or water-saturated conditions. For most of the investigated forest manipulations or natural gradients, the response of both N2O and CH4 fluxes was towards reducing the overall GHG forest sink. The most resilient forests were dry Mediterranean forests, as well as forests with high soil C / N ratio or high soil pH. Mitigation strategies may focus on (i) sustainable management of wet forest areas and forested peatlands, (ii) continuous forest cover management, (iii) reducing atmospheric N input and, thus, N availability, and (iv) improving neutralisation capacity of acid soils (e.g. wood ash application).
  •  
3.
  • Rees, R. M., et al. (författare)
  • Nitrous oxide emissions from European agriculture; an analysis of variability and drivers of emissions from field experiments
  • 2012
  • Ingår i: Biogeosciences Discussions. - : Copernicus GmbH. - 1810-6277. ; 9:7, s. 9259-9288
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitrous oxide emissions from a network of agricultural experiments in Europe and Zimbabwe were used to explore the relative importance of site and management controls of emissions. At each site, a selection of management interventions were compared 5 within replicated experimental designs in plot based experiments. Arable experiments were conducted at Beano in Italy, El Encin in Spain, Foulum in Denmark, Logården in Sweden, Maulde in Belgium, Paulinenaue in Germany, Harare in Zimbabwe and Tulloch in the UK. Grassland experiments were conducted at Crichton, Nafferton and Peaknaze in the UK, Gödöllö in Hungary, Rzecin in Poland, Zarnekow in Germany and 10 Theix in France. Nitrous oxide emissions were measured at each site over a period of at least two years using static chambers. Emissions varied widely between sites and as a result of manipulation treatments. Average site emissions (throughout the study period) varied between 0.04 and 21.21 kg N2O-N ha−1 yr−1, with the largest fluxes and variability associated with the grassland sites. Total nitrogen addition was found to be 15 the single most important determinant of emissions, accounting for 15% of the variance (using linear regression) in the data from the arable sites (p < 0.0001), and 77% in the grassland sites. The annual emissions from arable sites were significantly greater than those that would be predicted by IPCC default emission factors. Variability in N2O within sites that occurred as a result of manipulation treatments was greater than that 20 resulting from site to site and year to year variation, highlighting the importance of management interventions in contributing to greenhouse gas mitigation.
  •  
4.
  •  
5.
  • Crema, L., et al. (författare)
  • Novel m-CHP generation from small scale Concentrated Solar Power
  • 2012
  • Ingår i: World Renewable Energy Forum, WREF 2012, Including World Renewable Energy Congress XII and Colorado Renewable Energy Society (CRES) Annual Conference. - 9781622760923 ; , s. 735-742
  • Konferensbidrag (refereegranskat)abstract
    • The paper describes the realization of a modular 1-3 kWe, 3-9 kWth micro Combined Heat and Power (m-CHP) system based on innovative Concentrated Solar Power (CSP) and Stirling engine technology. This CSP m-CHP will provide electrical power, heating and cooling for single and multiple domestic dwellings and other small buildings. The cogeneration of energy at distributed level is one of leading argument in large part of energy policies related to renewable energy resources and systems. The actual marketable solar systems for domestic and distributed applications (PV and Solar thermal) suffer of notable limitation: i) the low overall (electrical) efficiency of PV systems create a small collected energy from available space, sometimes restricted in surface to few square meters, ii) the stagnation temperatures on solar thermal collectors actually limiting the diffusion of solar thermal systems, iii) fixed and not retrofittable systems may generate energy in intermittent way not aligned with the auto consumption profile of domestic spaces.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy