SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Albet Torres Nuria) srt2:(2013)"

Sökning: WFRF:(Albet Torres Nuria) > (2013)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Korten, Slobodanka, et al. (författare)
  • Sample solution constraints on motor-driven diagnostic nanodevices
  • 2013
  • Ingår i: Lab on a Chip. - : Royal Society of Chemistry (RSC). - 1473-0197 .- 1473-0189. ; 13:5, s. 866-876
  • Tidskriftsartikel (refereegranskat)abstract
    • The last decade has seen appreciable advancements in efforts towards increased portability of lab-on-a-chip devices by substituting microfluidics with molecular motor-based transportation. As of now, first proof-of-principle devices have analyzed protein mixtures of low complexity, such as target protein molecules in buffer solutions optimized for molecular motor performance. However, in a diagnostic workup, lab-on-a-chip devices need to be compatible with complex biological samples. While it has been shown that such samples do not interfere with crucial steps in molecular diagnostics (for example antibody-antigen recognition), their effect on molecular motors is unknown. This critical and long overlooked issue is addressed here. In particular, we studied the effects of blood, cell lysates and solutions containing genomic DNA extracts on actomyosin and kinesin-microtubule-based transport, the two biomolecular motor systems that are most promising for lab-on-a-chip applications. We found that motor function is well preserved at defined dilutions of most of the investigated biological samples and demonstrated a molecular motor-driven label-free blood type test. Our results support the feasibility of molecular-motor driven nanodevices for diagnostic point-of-care applications and also demonstrate important constraints imposed by sample composition and device design that apply both to kinesin-microtubule and actomyosin driven applications.
  •  
2.
  • Kumar, Saroj, et al. (författare)
  • Magnetic capture from blood rescues molecular motor function in diagnostic nanodevices
  • 2013
  • Ingår i: Journal of Nanobiotechnology. - : BioMed Central (BMC). - 1477-3155. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Introduction of effective point-of-care devices for use in medical diagnostics is part of strategies to combat accelerating health-care costs. Molecular motor driven nanodevices have unique potentials in this regard due to unprecedented level of miniaturization and independence of external pumps. However motor function has been found to be inhibited by body fluids.Results: We report here that a unique procedure, combining separation steps that rely on antibody-antigen interactions, magnetic forces applied to magnetic nanoparticles (MPs) and the specificity of the actomyosin bond, can circumvent the deleterious effects of body fluids (e.g. blood serum). The procedure encompasses the following steps: (i) capture of analyte molecules from serum by MP-antibody conjugates, (ii) pelleting of MP-antibody-analyte complexes, using a magnetic field, followed by exchange of serum for optimized biological buffer, (iii) mixing of MP-antibody-analyte complexes with actin filaments conjugated with same polyclonal antibodies as the magnetic nanoparticles. This causes complex formation: MP-antibody-analyte-antibody-actin, and magnetic separation is used to enrich the complexes. Finally (iv) the complexes are introduced into a nanodevice for specific binding via actin filaments to surface adsorbed molecular motors (heavy meromyosin). The number of actin filaments bound to the motors in the latter step was significantly increased above the control value if protein analyte (50-60 nM) was present in serum (in step i) suggesting appreciable formation and enrichment of the MP-antibody-analyte-antibody-actin complexes. Furthermore, addition of ATP demonstrated maintained heavy meromyosin driven propulsion of actin filaments showing that the serum induced inhibition was alleviated. Detailed analysis of the procedure i-iv, using fluorescence microscopy and spectroscopy identified main targets for future optimization.Conclusion: The results demonstrate a promising approach for capturing analytes from serum for subsequent motor driven separation/detection. Indeed, the observed increase in actin filament number, in itself, signals the presence of analyte at clinically relevant nM concentration without the need for further motor driven concentration. Our analysis suggests that exchange of polyclonal for monoclonal antibodies would be a critical improvement, opening for a first clinically useful molecular motor driven lab-on-a-chip device.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy