SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Albi E.) srt2:(2020-2024)"

Sökning: WFRF:(Albi E.) > (2020-2024)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  • 2021
  • swepub:Mat__t
  •  
3.
  • Campanella, A., et al. (författare)
  • Additional booster doses in patients with chronic lymphocytic leukemia induce humoral and cellular immune responses to SARS-CoV-2 similar to natural infection regardless ongoing treatments : A study by ERIC, the European Research Initiative on CLL
  • 2024
  • Ingår i: American Journal of Hematology. - : John Wiley & Sons. - 0361-8609 .- 1096-8652. ; 99:4, s. 745-750
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Profound immune dysregulation and impaired response to the SARS-CoV-2 vaccine put patients with chronic lymphocytic leukemia (CLL) at risk of severe COVID-19. We compared humoral memory and T-cell responses after booster dose vaccination or breakthrough infection. (Green) Quantitative determination of anti-Spike specific antibodies. Booster doses increased seroconversion rate and antibody titers in all patient categories, ultimately generating humoral responses similar to those observed in the postinfection cohort. In detail, humoral response with overscale median antibody titers arose in >80% of patients in watch and wait, off-therapy in remission, or under treatment with venetoclax single-agent. Anti-CD20 antibodies and active treatment with BTK inhibitors (BTKi) represent limiting factors of humoral response, still memory mounted in ~40% of cases following booster doses or infection. (Blue) Evaluation of SARS-CoV-2-specific T-cell responses. Number of T-cell functional activation markers documented in each patient. The vast majority of patients, including those seronegative, developed T-cell responses, qualitatively similar between treatment groups or between vaccination alone and infection cases. These data highlight the efficacy of booster doses in eliciting T-cell immunity independently of treatment status and support the use of additional vaccination boosters to stimulate humoral immunity in patients on active CLL-directed treatments.
  •  
4.
  • Navarro-Almaida, D., et al. (författare)
  • Gas phase Elemental abundances in Molecular cloudS (GEMS): II. On the quest for the sulphur reservoir in molecular clouds: the H2S case
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 637
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Sulphur is one of the most abundant elements in the Universe. Surprisingly, sulphuretted molecules are not as abundant as expected in the interstellar medium and the identity of the main sulphur reservoir is still an open question. Aims. Our goal is to investigate the H2S chemistry in dark clouds, as this stable molecule is a potential sulphur reservoir. Methods. Using millimeter observations of CS, SO, H2S, and their isotopologues, we determine the physical conditions and H2S abundances along the cores TMC 1-C, TMC 1-CP, and Barnard 1b. The gas-grain model NAUTILUS is used to model the sulphur chemistry and explore the impact of photo-desorption and chemical desorption on the H2S abundance. Results. Our modeling shows that chemical desorption is the main source of gas-phase H2S in dark cores. The measured H2S abundance can only be fitted if we assume that the chemical desorption rate decreases by more than a factor of 10 when n(H) > 2 x 10(4). This change in the desorption rate is consistent with the formation of thick H2O and CO ice mantles on grain surfaces. The observed SO and H2S abundances are in good agreement with our predictions adopting an undepleted value of the sulphur abundance. However, the CS abundance is overestimated by a factor of 5-10. Along the three cores, atomic S is predicted to be the main sulphur reservoir. Conclusions. The gaseous H2S abundance is well reproduced, assuming undepleted sulphur abundance and chemical desorption as the main source of H2S. The behavior of the observed H2S abundance suggests a changing desorption efficiency, which would probe the snowline in these cold cores. Our model, however, highly overestimates the observed gas-phase CS abundance. Given the uncertainty in the sulphur chemistry, we can only conclude that our data are consistent with a cosmic elemental S abundance with an uncertainty of a factor of 10.
  •  
5.
  • Rodríguez-Baras, M., et al. (författare)
  • Gas phase Elemental abundances in Molecular cloudS (GEMS): IV. Observational results and statistical trends
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 648
  • Tidskriftsartikel (refereegranskat)abstract
    • Gas phase Elemental abundances in Molecular CloudS (GEMS) is an IRAM 30 m Large Program designed to provide estimates of the S, C, N, and O depletions and gas ionization degree, X(e-), in a selected set of star-forming filaments of Taurus, Perseus, and Orion. Our immediate goal is to build up a complete and large database of molecular abundances that can serve as an observational basis for estimating X(e-) and the C, O, N, and S depletions through chemical modeling. We observed and derived the abundances of 14 species (13CO, C18O, HCO+, H13CO+, HC18O+, HCN, H13CN, HNC, HCS+, CS, SO, 34SO, H2S, and OCS) in 244 positions, covering the AV ~3 to ~100 mag, n(H2) ~ a few 103 to 106 cm-3, and Tk ~10 to ~30 K ranges in these clouds, and avoiding protostars, HII regions, and bipolar outflows. A statistical analysis is carried out in order to identify general trends between different species and with physical parameters. Relations between molecules reveal strong linear correlations which define three different families of species: (1) 13CO and C18O isotopologs; (2) H13CO+, HC18O+, H13 CN, and HNC; and (3) the S-bearing molecules. The abundances of the CO isotopologs increase with the gas kinetic temperature until TK ~ 15 K. For higher temperatures, the abundance remains constant with a scatter of a factor of ~3. The abundances of H13 CO+, HC18 O+, H13 CN, and HNC are well correlated with each other, and all of them decrease with molecular hydrogen density, following the law ∝ n(H2)-0.8  ±  0.2. The abundances of S-bearing species also decrease with molecular hydrogen density at a rate of (S-bearing/H)gas ∝ n(H2)-0.6  ±  0.1. The abundances of molecules belonging to groups 2 and 3 do not present any clear trend with gas temperature. At scales of molecular clouds, the C18O abundance is the quantity that better correlates with the cloud mass. We discuss the utility of the 13CO/C18O, HCO+/H13CO+, and H13 CO+/H13CN abundance ratios as chemical diagnostics of star formation in external galaxies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy